Skip to main content

Advertisement

Log in

Pressure-Dependent Thermal Expansion Coefficient by a Diamond Anvil Cell

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A thermal expansion coefficient (αp) is an essential thermophysical quantity for high pressure research. The thermal expansion coefficient is the volume change over temperature in an isobaric heating process. Although isobaric heating processes for diamond anvil cell (DAC) have been conducted by keeping the pressure constant during heating, pressure determination at high temperature high pressure is debatable for decades long. In this paper, a revertible heating/cooling approach is presented, while its pressure determination at high temperature high pressure is not required. A pressure-dependent thermal expansion coefficient of MgO at 9.5 GPa by revertible heating/cooling was determined by a DAC and its result matches with the one collected by large volume press, whose isobaric heating was conducted by manually adjusting its load/pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article.

References

  1. J. Zhang, Y. Zhao, R.S. Hixson, G.T. Gray III., L. Wang, W. Utsumi, S. Hiroyuki, H. Takanori, Phys. Rev. B 78, 054119 (2008)

    Article  ADS  Google Scholar 

  2. M.E. Cavaleri, T.G. Plymate, J.H. Stout, J. Phys. Chem. Solids 49, 945 (1988)

    Article  ADS  Google Scholar 

  3. A. Courac, Y.L. Godec, V.L. Solozhenko, N. Guignot, W.A. Crichton, J. Appl. Phys. 127, 055903 (2020)

    Article  ADS  Google Scholar 

  4. T. Irifune, N. Nishiyama, K. Kuroda, T. Inoue, M. Isshiki, W. Utsumi, K. Funakoshi, S. Urakawa, T. Uchida, T. Katsura, O. Ohtaka, Science 279, 1698 (1998)

    Article  ADS  Google Scholar 

  5. N. Dubrovinskaia, L. Dubrovinsky, Advances in High-Pressure Technology for Applications Geophysical: Chapter 25, Internal and External Electrical Heating in Diamond Anvil Cells (Elsevier, Amsterdam, 2005), pp. 487–501

    Book  Google Scholar 

  6. Z. Wang, Y. Liu, Y. Bi, W. Song, H. Xie, High Press. Res. 32, 167 (2012)

    ADS  Google Scholar 

  7. R.L. Cook, H.E. King Jr., C.A. Herbst, D.R. Herschbach, J. Chem. Phys. 100, 5178 (1994)

    Article  ADS  Google Scholar 

  8. S. Ono, K. Mibe, Phys. Rev. B 84, 054114 (2011)

    Article  ADS  Google Scholar 

  9. A. Kavner, T.S. DuffyJ, Appl. Phys. 89, 1907 (2001)

    Article  Google Scholar 

  10. Y. Tange, T. Irifune, K.I. Funakoshi, High Press. Res. 28, 245 (2008)

    Article  ADS  Google Scholar 

  11. D.J. Weidner, M.T. Vaughan, J. Ko, Y. Wang, X. Liu, A. Yeganeh-Haeri, R.E. Pacalo, Y. Zhao, in High-Pressure Research: Application to Earth and Planetary Sciences: Characterization of Stress, Pressure, and Temperature in SAM85, A DIA Type High Pressure Apparatus. ed. by Y. Syono, M.H. Manghnani (Terra Scientific Publishing Company, Tokyo, 1992), pp. 13–17

    Google Scholar 

  12. J. Zhang, Phys. Chem. Miner. 27, 145 (2000)

    Article  ADS  Google Scholar 

  13. Y.C. Zhao, F. Porsch, W.B. Holzapfel, Phys. Rev. B 52, 134 (1995)

    Article  ADS  Google Scholar 

  14. Z.A. Dreger, C.J. Breshike, Y.M. Gupta, Chem. Phys. Lett. 679, 212 (2017)

    Article  ADS  Google Scholar 

  15. Y. Wang, D.J. Weidner, F. Guyot, J. Geophys. Res. Solid Earth 101, 661 (1996)

    Article  Google Scholar 

  16. R. Boehler, N. von Bargen, A. Chopelas, J. Geophys. Res. Solid Earth 95, 21731 (1990)

    Article  Google Scholar 

  17. Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, V. Prakapenka, Proc. Natl. Acad. Sci. USA 104, 9182 (2007)

    Article  ADS  Google Scholar 

  18. Y. Fei, J. Li, K. Hirose, W. Minarik, J. Van Orman, C. Sanloup, W. van Westrenen, T. Komabayashi, K. Funakoshi, Phys. Earth Planet. Int. 143–144, 515 (2004)

    Article  ADS  Google Scholar 

  19. Y. Ye, V. Prakapenka, Y. Meng, S.H. Shim, J. Geophys. Res. Solid Earth 122, 3450 (2017)

    Article  ADS  Google Scholar 

  20. K. Hirose, S.I. Karato, V.F. Cormier, Geophys. Res. Lett. 33, L12S01 (2006)

    Article  Google Scholar 

  21. S.H. Shim, T.S. Duffy, K. Takemura, Earth Planet. Sci. Lett. 203, 729 (2002)

    Article  ADS  Google Scholar 

  22. Y. Wang, T. Uchida, J. Zhang, M. Rivers, S. Sutton, Phys. Earth Planet. Int. 143, 57 (2004)

    ADS  Google Scholar 

  23. O.L. Anderson, D.G. Isaak, S. Yamamoto, J. Appl. Phys. 65, 1534 (1989)

    Article  ADS  Google Scholar 

  24. J.C. Jamieson, J.N. Fritz, M.H. Manghnani, Adv. Earth Planet. Sci. 12, 27 (1982)

    Google Scholar 

  25. D.L. Heinz, R. Jeanloz, J. Appl. Phys. 55, 885 (1984)

    Article  ADS  Google Scholar 

  26. S. Ono, T. Katsura, E. Ito, M. Kanzaki, A. Yoneda, M.J. Walter, S. Urakawa, W. Utsumi, K. Funakoshi, Geophys. Res. Lett. 28, 835 (2001)

    Article  ADS  Google Scholar 

  27. J. Yan, A. Doran, A.A. MacDowell, B. Kalkan, Rev. Sci. Instrum. 92, 013903 (2021)

    Article  ADS  Google Scholar 

  28. Z. Jenei, H. Cynn, K. Visbeck, W.J. Evans, Rev. Sci. Instrum 84, 095114 (2013)

    Article  ADS  Google Scholar 

  29. F. Datchi, A. Dewaele, Y.L. Godec, P. Loubeyre, Phys. Rev. B 75, 214104 (2007)

    Article  ADS  Google Scholar 

  30. J. Kreutz, S.A. Medvedev, H.J. Jodl, Phys. Rev. B 72, 214115 (2005)

    Article  ADS  Google Scholar 

  31. V.L. Solozhenko, K.A. Cherednichenko, O.O. Kurakevych, J. Superhard Mater. 39, 71 (2017)

    Article  Google Scholar 

  32. S. Speziale, C.S. Zha, T.S. Duffy, R.J. Hemley, H.K. Mao, J. Geophys. Res. Solid Earth 106, 515 (2001)

    Article  Google Scholar 

  33. N.C. Holmes, J.A. Moriarty, G.R. Gathers, W.J. Nellis, J. Appl. Phys. 66, 2962 (1989)

    Article  ADS  Google Scholar 

  34. A. Doran, L. Schlicker, C.M. Beavers, S. Bhat, M.F. Bekheet, A. Gurlo, Rev. Sci. Instrum. 88, 013903 (2017)

    Article  ADS  Google Scholar 

  35. W. Utsumi, D.J. Weidner, R.C. Liebermann, Am. Geophys. Union 101, 327 (1998)

    Google Scholar 

  36. G. Fiquet, D. Andrault, J.P. Itie, P. Gillet, P. Richet, Phys. Earth Planet. Int. 95, 1 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J. Yan thanks Q. Williams, M. Kunz, A. Doran, A. MacDowell, and B. Kalkan for their discussion and support to this project. J. Yan was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 1606856. The X-ray diffraction research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. We acknowledge partial support from NSF CIMM project under Award No. 1541079, CIMM LINK project, DOE/NNSA Award No. DE-NA0003979, and DoD support under Contract No. W911NF1910005, NSF LAMDA Project Award # 1946231 under SEED Track 1B support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyuan Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Yang, S. Pressure-Dependent Thermal Expansion Coefficient by a Diamond Anvil Cell. Int J Thermophys 43, 17 (2022). https://doi.org/10.1007/s10765-021-02945-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02945-3

Keywords

Navigation