Skip to main content

Advertisement

Log in

Hybrid Thermal Treatment Based on Microwaves and Heating Resistance for Composite Materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Nowadays, it is well known that volumetric heating through microwaves inhibits certain surface properties from being achieved. Similarly, exclusively heating via thermal radiation is neither deep nor homogeneous enough for short periods of time. But combining both approaches can alleviate such issues. In fact, this kind of hybrid heating has been used for many years in real processes for thermal treatment of composite materials. Nonetheless, many questions remain unsettled. In this manuscript, we discuss the modeling and simulation of such a hybrid system, when heating a heterogeneous load composed of a solid core with three concentric spherical shells. The heating sources are given by electromagnetic waves in the microwave range, and by constant thermal radiation over one of the outer hemispheres. Only the core is considered to absorb the energy transported by the electromagnetic waves (high dielectric loss material). Hence, shells are transparent to microwaves (low dielectric loss materials). The thermophysical properties were considered constant with position. For all cases, peak temperature was observed in the geometrical center of the system, as has been shown by experimentation. Furthermore, simulation results revealed that this hybrid heating strategy has a drastic effect on the temperature profiles generated with only microwave, although the surface temperature homogeneity can be improved using an external electrical resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Meng, H. Cheng, L. Ma, Y. Cheng, Sci. China Phys. Mech. Astron. 62, 40711 (2019)

    Article  ADS  Google Scholar 

  2. S. Kakaç, Y. Yener, C.P. Naveira-Cotta, Heat Conduction (CRC Press, Boca Raton, 2018).

    Book  Google Scholar 

  3. L. Evangelisti, C. Guattari, P. Gori, F. Asdrubali, Build. Environ. 127, 77 (2018)

    Article  Google Scholar 

  4. A.V. Eremin, E.V. Stefanyuk, O.Y. Kurganova, V.K. Tkachev, M.P. Skvortsova, J. Mach. Manuf. Reliab. 47, 249 (2018)

    Article  Google Scholar 

  5. S.H. Teo, A. Islam, E.S. Chan, S.Y.T. Choong, N.H. Alharthi, Y.H. Taufiq-Yap, M.R. Awual, J. Clean. Prod. 208, 816 (2019)

    Article  Google Scholar 

  6. D. Mandal, M. Alam, K. Mandal, Phys. B Condens. 554, 51 (2019)

    Article  ADS  Google Scholar 

  7. J.A. Rudd, C.E. Gowenlock, V. Gomez, E. Kazimierska, A.M. Al-Enizi, E. Andreoli, A.R. Barron, J. Mater. Sci. Technol. 35, 1121 (2019)

    Article  Google Scholar 

  8. B. Zhao, X. Zhang, X. Fu, C. McCarthy, Mater. Lett. 235, 31 (2019)

    Article  Google Scholar 

  9. V. Polshettiwar, N. Bayal, B. Singh, R. Singh, and A. Maity, (2019)

  10. R.M. Novais, J. Carvalheiras, D.M. Tobaldi, M.P. Seabra, R.C. Pullar, J.A. Labrincha, J. Clean. Prod. 207, 350 (2019)

    Article  Google Scholar 

  11. S. Rafai, C. Qiao, M. Naveed, Z. Wang, W. Younas, S. Khalid, C. Cao, Chem. Eng. J. 362, 576 (2019)

    Article  Google Scholar 

  12. S. Tang, S. Jin, R. Zhang, Y. Liu, J. Wang, Z. Hu, W. Lu, S. Yang, W. Qiao, L. Ling, Appl. Surf. Sci. 473, 222 (2019)

    Article  ADS  Google Scholar 

  13. N. Pauzi, N.M. Zain, N.A.A. Yusof, Bull. Chem. React. Eng. Catal. 14, 182 (2019)

    Article  Google Scholar 

  14. S. Cheng, F. Liu, C. Shen, C. Zhu, A. Li, J. Clean. Prod. 215, 232 (2019)

    Article  Google Scholar 

  15. D. Loganathan, A. Gnanavelbabu, K. Rajkumar, R. Ramadoss, Procedia Eng. 97, 1692 (2014)

    Article  Google Scholar 

  16. C.E. Holcombe, N.L. Dykes, and T.N. Tiegs, (1992)

  17. N. Chen, J.-T. Jiang, C.-Y. Xu, S.-J. Yan, L. Zhen, Sci. Rep. 8, 1 (2018)

    Article  ADS  Google Scholar 

  18. P. Ge, K. Sun, A. Li, G. Pingji, Ceram. Int. 44, 2727 (2018)

    Article  Google Scholar 

  19. N.K. Rawat, S. Ahmad, Mater. Chem. Phys. 204, 282 (2018)

    Article  Google Scholar 

  20. W. Choi, K. Choi, C. Yu, Adv. Funct. Mater. 28, 1704877 (2018)

    Article  Google Scholar 

  21. S. Singh, P.K. Jain, J. Heat Transf. 138, 14 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial assistance from the Universidad Industrial de Santander, Colombia, and from the Tecnologico de Monterrey, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Jimenez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez, C., Amaya, I. & Correa, R. Hybrid Thermal Treatment Based on Microwaves and Heating Resistance for Composite Materials. Int J Thermophys 42, 15 (2021). https://doi.org/10.1007/s10765-020-02767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02767-9

Keywords

Navigation