Skip to main content

Advertisement

Log in

Measurement of Viscosity of a Binary Mixture of R1123 + R32 Refrigerant by Tandem Capillary Tube Method

  • ATPC 2019
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A refrigerant mixture of R1123 + R32 is expected to be an alternative working fluid for refrigeration systems, organic Rankine cycle and heat pumps due to its lower global warming potential and transport properties. The goals of this work are to measure the viscosity of the liquid and vapor phases of this mixture refrigerant. Consequently, the viscosity of mixture refrigerant was measured by the tandem capillary tube method up to 4.5 MPa over a temperature range from 250.64 K to 312.61 K for the liquid phase and from 323.35 K to 382.88 K in the vapor phase, respectively. Mass fractions of measured R1123/R32 refrigerant mixture were 0.428/0.572 in the liquid phase and 0.425/0.575 in the vapor phase. The obtained experimental data were compared with estimated values of the ECS model, and the average absolute deviation (AAD) was found at 3.63 % in the liquid phase and 2.45 % of the vapor phase. Also, the measured liquid and vapor viscosity data were correlated with the Grunberg–Nissan method and Wilke mixture correlation, respectively, while the AAD was 1.33 % for liquid and 3.69 % for vapor phases. The total combined standard uncertainties in the liquid and vapor viscosity measurements were estimated to be less than 2.9 % and 3.0 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

L :

Length of the capillary tube (m)

M :

Molecular weight (kg·mol−1)

m :

Mass fraction of each component

P :

Pressure (MPa)

ΔP :

Pressure difference (MPa)

q :

Volumetric flow rate (m3·s−1)

r :

Radius of the capillary tube (m)

T :

Temperature (K)

u :

Standard uncertainty

u c :

Combined uncertainty

X, Y :

Quantity used in Eq. 2

Z :

Interaction coefficient used in Eqs. 4 and 5

η :

Viscosity (μ·Pa·s)

ρ :

Density of the fluid (kg·m−3)

ϕ :

Sutherland coefficient

cal :

Calculated

exp :

Experimental

l :

Long capillary tube

mix :

Mixture

s :

Short capillary tube

1, 2 :

Pure components 1 and 2

References

  1. M.J. Alam, K. Yamaguchi, Y. Hori, K. Kariya, A. Miyara, Int. J. Refrig. 104, 221 (2019)

    Article  Google Scholar 

  2. M.J. Alam, A. Miyara, K. Kariya, K.K. Kontomaris, J. Chem. Eng. Data 63, 1706 (2018)

    Article  Google Scholar 

  3. A. Miyara, M.J. Alam, K. Kariya, Int. J. Refrig. 92, 86 (2018)

    Article  Google Scholar 

  4. M. Richter, M.O. McLinden, E.W. Lemmon, J. Chem. Eng. Data 56, 3254 (2011)

    Article  Google Scholar 

  5. E.W. Lemmon, M.O. McLinden, W. Wagner, J. Chem. Eng. Data 54, 3141 (2009)

    Article  Google Scholar 

  6. Y. Higashi, R. Akasaka, in Proceedings of the 16th International Refrigeration and Air Conditioning Conference, Purdue, Purdue e-Pubs (2016). http://docs.lib.purdue.edu/iracc/1688

  7. T. Tanaka, H. Okamoto, K. Ueno, J. Irisawa, T. Otsuka, T. Noigami, R. Dobashi, in Proceedings of the AIChE Annual Meeting, Atlanta (2014)

  8. AGC Chemicals, AMOLEA® X, Y Series (2016). https://www.agc-chemicals.com/file.jsp?id=30035. Accessed 10 Dec 2019 (in Japanese)

  9. R. Akasaka, M. Fukushima, E.W. Lemmon, in Proceedings of the 16th International Refrigeration and Air Conditioning Conference, Purdue, Purdue e-Pubs (2016). http://docs.lib.purdue.edu/iracc/1698

  10. M. Hashimoto, T. Otsuka, M. Fukushima, H. Okamoto, H. Hayamizu, K. Ueno, R. Akasaka, Sci. Technol. Built Eng. 25, 776 (2019)

    Article  Google Scholar 

  11. Y.A. Lisochkin, V.I. Poznyak, Combust. Explos. Shock Waves. 42, 140 (2006)

    Article  Google Scholar 

  12. T. Otsuka, K. Ueno, H. Okamoto, M. Ippommatsu, R. Dobashi, J. Loss Prevent. Proc. 54, 179 (2018)

    Article  Google Scholar 

  13. A. Miyara, M.J. Alam, K. Kariya, in Proceedings of the 1st IIR International Conference on the Application of HFO Refrigerants, Birmingham, UK (2018)

  14. AIST-The National Institute of Advanced Industrial Science and Technology, Japan (2016)

  15. ASHRAE, ANSI/ASHRAE Standard 34-2016, in Design and Safety Classification of Refrigerants, Atlanta GA: ASHRAE (2016)

  16. Y. Higashi, Int. J. Refrig 17, 524 (1994)

    Article  Google Scholar 

  17. M.H. Kim, J. Pettersen, C.W. Bullard, Prog. Energy Combust. Sci. 30, 119 (2004)

    Article  Google Scholar 

  18. Y. Dang, T. Kamiaka, C. Dang, E. Hihara, J. Chem. Thermodyn. 89, 183 (2015)

    Article  Google Scholar 

  19. Y. Dang, H.S. Kim, C. Dang, E. Hihara, Int. J. Refrig. 58, 131 (2015)

    Article  Google Scholar 

  20. Y. Hori, M.J. Alam, K. Kariya, A. Miyara, in Proceedings of the 39th Japan Symposium on Thermophysical Properties, Nagoya (2018)

  21. D. Mondal, Y. Hori, K. Kariya, A. Miyara, in Proceedings of the 12th Asian Thermophysical Properties Conference, Xi’an, China (2019)

  22. JCGM, GUM 1995 with minor correlations, evaluation of measurement data-guide to the expression of uncertainty in measurement, 100 (2008)

  23. B. N. Taylor, C.E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, NIST (1994). https://emtoolbox.nist.gov/Publications/NISTTechnicalNote1297s.pdf. Accessed 10 Dec 2019

  24. S. Bell, A Beginner’s Guide to Uncertainty of Measurement, Measurement Good Practice Guide No. 11, Issue 2, Centre for Basic, Thermal and Length Metrology, National Physical Laboratory (2001). https://www.dit.ie/media/physics/documents/GPG11.pdf. Accessed 10 Dec 2019

  25. M. Fukushima and M. Hashimoto, Res. Reports Asahi Glass Co., Ltd., 65 (2015). https://www.agc.com/innovation/library/pdf/65-10.pdf

  26. K. Kariya, M.A. Islam, M.J. Alam, H. Ishida, A. Miyara, A., in Proceedings of the International Conference on Engineering, Science and Nanotechnology; AIP Conf. Proc. 1788, 020003 (2017)

  27. M. Kostic, K. Simham, in Proceedings of the 6th WSEAS International Conference on Heat and Mass Transfer, Dekalb, Il 60115 U.S.A (2009)

  28. X. Meng, G. Qiu, J. Wu, I.M. Abdulagatov, J. Chem. Thermodyn. 63, 24 (2013)

    Article  Google Scholar 

  29. A. Miyara, M.J. Alam, K. Yamaguchi, K. Kariya, in Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers (2019)

  30. M.L. Huber, NISTIR 8209, Models for Viscosity, Thermal Conductivity and Surface Tension of Selected Pure Fluids as Implemented in REFPROP v10.0 (2018)

  31. E.W. Lemmon, I.H. Bell, M.L. Huber, and M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic Properties-REFPROP (DLL Version 10.0a), NIST, USA (2018)

  32. L. Grunberg, A.H. Nissan, Nature 164, 799 (1949)

    Article  ADS  Google Scholar 

  33. D.S. Viswanath, T.K. Ghosh, D.H.L. Prasad, N.V.K. Dutt, K.Y. Rani, Viscosity of Liquids (Springer Edditions, Dordrecht, 2007), pp. 427–435

    MATH  Google Scholar 

  34. D.S. Jung, D. Didion, Int. J. Refrig. 13, 243 (1990)

    Article  Google Scholar 

  35. C.R. Wilke, J. Chem. Phys. 18, 517 (1950). https://doi.org/10.1063/1.1747673

    Article  ADS  Google Scholar 

  36. T. A. Davidson, A simple and accurate method for calculating viscosity of gaseous mixtures, United States, Report of Investigations 9456 (1993)

  37. W. Sutherland, Philos. Mag. 40, 421 (1895)

    Article  Google Scholar 

  38. H. Cheung, Thesis of Thermal Conductivity and Viscosity of Gas Mixture, Printed for the U. S. Atomic Energy Commission (1958). https://www.osti.gov/servlets/purl/4303238

  39. X. Meng, X. Gu, J. Wu, S. Bi, Int. J. Thermophys. 36, 2497 (2015)

    Article  ADS  Google Scholar 

  40. F. Yousefi, S.M. Hosseini, K. Hamidi, M. Pierantozzi, Int. J. Thermophys. 40, 74 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by New Energy and Industrial Technology Development Organization (NEDO), Japan, and was supported by AGC Inc. for providing the samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dipayan Mondal or Akio Miyara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Selected Papers of the 12th Asian Thermophysical Properties Conference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, D., Hori, Y., Kariya, K. et al. Measurement of Viscosity of a Binary Mixture of R1123 + R32 Refrigerant by Tandem Capillary Tube Method. Int J Thermophys 41, 83 (2020). https://doi.org/10.1007/s10765-020-02653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02653-4

Keywords

Navigation