Skip to main content
Log in

Inverse Identification of Temperature-Dependent Thermal Properties Using Improved Krill Herd Algorithm

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A novel intelligent algorithm, krill herd (KH), is firstly introduced to solve the inverse identification of temperature-dependent thermal properties of materials. To promote the searching ability and accelerate the convergence velocity, three improved KH (IKH) algorithms are proposed and developed for solving the optimization tasks. The temperature-dependent thermal conductivity and specific heat of a building material are estimated by using the KH algorithms, and the IKHs achieve better performance than the original KHs. Moreover, the functional forms of thermal conductivity of insulating and refractory materials are also reconstructed. The IKH algorithm is proved to be more accurate than other algorithms. Finally, a two-dimensional nonhomogeneous heat conduction model is investigated and the thermal conductivities of materials at specified temperatures are reconstructed, in which no prior information is needed for the expressions of the thermal conductivity to be identified. All the retrieval results show that IKH algorithm is robust and effective for solving the inverse heat conduction problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a :

Coefficient of thermal conductivity of steel

b :

Constant term of energy equation or coefficient of specific heat of steel

c :

Coefficient of thermal conductivity of slag wool, foam brick and silica brick

c p :

Specific heat, J/(kg·°C)

C :

Volume specific heat, J/(m3·°C)

C best :

Effect coefficient of the best krill individual

C r :

Crossover probability

C t :

Coefficient of search step

D :

Random movement

F :

Foraging movement

F obj :

Fitness function

I :

Iteration number

k :

Coefficient of thermal conductivity of carbon steel and aluminum

K :

Fitness value

L :

Length of medium

LB :

Lower boundary

m :

Measured signal

M :

Population size

Mu :

Mutation probability

n :

The number of boundary

N :

Induced movement

R :

A uniformly distributed random number

q :

Heat flux, W/m2

rand():

A uniformly distributed random number

t :

Temperature, °C

UB :

Upper boundary

V :

Total speed

V f :

Foraging speed

x :

x-coordinate, m

X :

Position of krill individual

Y :

Value of estimation parameters

y :

y-coordinate, m

α :

Local or target effect

β :

Effect provided by the food or the individual best position

Δ:

A fluctuation

Δt :

Search step size

ε :

Computational accuracy

ε rel :

Relative error

γ :

Measurement error

λ :

Thermal conductivity, W/(m·°C)

μ :

Control number

ρ :

Density, kg/m3

σ :

Standard deviation

τ :

Time, s

ω :

Inertia weight

ς :

A normally distributed random number

Ψ :

Sensitivity coefficient

best:

The best value

est:

Estimated parameter

exa:

Exact parameter

f:

Foraging motion

food:

Imaginary food position

in:

Incident value

max:

The maximum value

mea:

Measurement value

min:

The minimum value

n:

Induced movement

new:

The current iteration

old:

The last iteration

out:

Outgoing value

r :

Random number

References

  1. J.B. Beck, B. Blackwell, C.R. St. Clair Jr., Inverse Heat Conduction: Ill-Posed Problems (Wiley-Interscience, New York, 1985)

    MATH  Google Scholar 

  2. O.M. Alifanov, Inverse Heat Transfer Problems (Springer, Berlin, 1994)

    Book  Google Scholar 

  3. G. Milano, F. Scarpa, F. Righni, G.C. Bussolino, Ten years of parameter estimation applied to dynamic thermophysical property measurements. Int. J. Thermophys. 22(4), 1227–1240 (2001)

    Article  Google Scholar 

  4. B. Sawaf, M.N. Özisik, An inverse analysis to estimate linearly temperature dependent thermal conductivity components and heat capacity of an orthotropic medium. Int. J. Heat Mass Transf. 38(16), 3005–3010 (1995)

    Article  Google Scholar 

  5. D.W. Tang, N. Araki, An inverse analysis to estimate relaxation parameters and thermal diffusivity with a universal heat conduction equation. Int. J. Thermophys. 21(2), 553–561 (2000)

    Article  Google Scholar 

  6. M. Cui, K. Yang, X.L. Xu, S.D. Wang, X.W. Gao, A modified Levenberg–Marquardt algorithm for simultaneous estimation of multi-parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems. Int. J. Heat Mass Transf. 97, 908–916 (2016)

    Article  Google Scholar 

  7. G.H. Tang, C.L. Xu, L.T. Shao, B. Zhou, D.Y. Yang et al., Improve algorithms of differential optical absorption spectroscopy for monitoring SO2, NO2 from flue gas. Meas. Sci. Technol. 20(1), 015601 (2009)

    Article  Google Scholar 

  8. J. Zmywaczyk, P. Koniorczyk, Numerical solution of inverse radiative–conductive transient heat transfer problem in a grey participating medium. Int. J. Thermophys. 30(4), 1438–1451 (2009)

    Article  ADS  Google Scholar 

  9. M. Cui, N. Li, Y.F. Liu, X.W. Gao, Robust inverse approach for two-dimensional transient nonlinear heat conduction problems. J. Thermophys. Heat Transf. 29(2), 253–262 (2015)

    Article  Google Scholar 

  10. N. Ukrainczyk, Thermal diffusivity estimation using numerical inverse solution for 1D heat conduction. Int. J. Heat Mass Transf. 52(25–26), 5675–5681 (2009)

    Article  Google Scholar 

  11. F.Q. Wang, J.Y. Tan, Z.Q. Wang, Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas. Energy Conv. Manag. 83, 159–166 (2014)

    Article  Google Scholar 

  12. J. Jiao, Z.X. Guo, Thermal interaction of short-pulsed laser focused beams with skin tissues. Phys. Med. Biol. 54, 4225–4241 (2009)

    Article  Google Scholar 

  13. M. Kosaka, M. Monde, Simultaneous measurement of thermal diffusivity and thermal conductivity by means of inverse solution for one-dimensional heat conduction (anisotropic thermal properties of CFRP for FCEV). Int. J. Thermophys. 36(10–11), 2590–2598 (2015)

    Article  ADS  Google Scholar 

  14. M. Cui, W.W. Duan, X.W. Gao, A new inverse analysis method based on a relaxation factor optimization technique for solving transient nonlinear inverse heat conduction problems. Int. J. Heat Mass Transf. 90, 491–498 (2015)

    Article  Google Scholar 

  15. Y.S. Sun, J. Ma, B.W. Li, Z.X. Guo, Predication of nonlinear heat transfer in a convective-radiative fin with temperature-dependent properties by the collocation spectral method. Numer. Heat Transf. B-Fundam 69(1), 68–83 (2016)

    Article  ADS  Google Scholar 

  16. S.Y. Zhao, B.M. Zhang, S.Y. Du, X.D. He, Inverse identification of thermal properties of fibrous insulation from transient temperature measurements. Int. J. Thermophys. 30(6), 2020–2035 (2009)

    Article  ADS  Google Scholar 

  17. M. Cui, X.W. Gao, J.B. Zhang, A new approach for the estimation of temperature-dependent thermal properties by solving transient inverse heat conduction problems. Int. J. Therm. Sci. 58, 113–119 (2012)

    Article  Google Scholar 

  18. B. Zhang, C.L. Xu, S.M. Wang, An inverse method for flue gas shielded metal surface temperature measurement based on infrared radiation. Meas. Sci. Technol. 27(7), 74002–74012 (2016)

    Article  Google Scholar 

  19. X.C. Yu, Y.C. Bai, M. Cui, X.W. Gao, Inverse analysis of thermal conductivities in transient non-homogeneous and non-linear heat conductions using BEM based on complex variable differentiation method. Sci. China-Phys. Mech. Astron. 56(5), 966–973 (2013)

    Article  ADS  Google Scholar 

  20. C.H. Huang, J.Y. Yan, An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity. Int. J. Heat Mass Transf. 38(18), 3433–3441 (1995)

    Article  Google Scholar 

  21. C.H. Huang, J.Y. Yan, H.T. Chen, Function estimation in predicting temperature-dependent thermal conductivity without internal measurements. J. Thermophys. Heat Transf. 9(4), 667–673 (1995)

    Article  Google Scholar 

  22. C.H. Huang, J.Y. Yan, An inverse problem in predicting temperature dependent heat capacity per unit volume without internal measurements. Int. J. Numer. Methods Eng. 39(4), 605–618 (1996)

    Article  Google Scholar 

  23. C.H. Huang, S.C. Chin, A two-dimensional inverse problem in imaging the thermal conductivity of a non-homogeneous medium. Int. J. Heat Mass Transf. 43(22), 4061–4071 (2000)

    Article  Google Scholar 

  24. M. Cui, Q.H. Zhu, X.W. Gao, A modified conjugate gradient method for transient nonlinear inverse heat conduction problems: a case study for identifying temperature-dependent thermal conductivities. J. Heat Transf.-Trans. ASME 136(9), 091301 (2014)

    Article  Google Scholar 

  25. W.K. Yeung, T.T. Lam, Second-order finite difference approximation for inverse determination of thermal conductivity. Int. J. Heat Mass Transf. 39(17), 3685–3693 (1996)

    Article  Google Scholar 

  26. C.L. Chang, M. Chang, Inverse estimation of the thermal conductivity in a one-dimensional domain by Taylor series approach. Heat Transf. Eng. 29(9), 830–838 (2008)

    Article  ADS  Google Scholar 

  27. C.L. Chang, M. Chang, Inverse determination of thermal conductivity using semi-discretization method. Appl. Math. Model. 33(3), 1644–1655 (2009)

    Article  Google Scholar 

  28. M. Raudenský, J. Horský, J. Krejsa, L. Sláma, Usage of artificial intelligence methods in inverse problems for estimation of material parameters. Int. J. Numer. Methods Heat Fluid Flow 6(8), 19–29 (1996)

    Article  Google Scholar 

  29. B. Czél, K.A. Woodbury, G. Gróf, Inverse identification of temperature-dependent volumetric heat capacity by neural networks. Int. J. Thermophys. 34(2), 284–305 (2013)

    Article  ADS  Google Scholar 

  30. B. Czél, G. Gróf, Genetic algorithm-based method for determination of temperature-dependent thermophysical properties. Int. J. Thermophys. 30, 1975–1991 (2009)

    Article  ADS  Google Scholar 

  31. Z.H. Ruan, Y. Yuan, Q.X. Chen, C.X. Zhang, Y. Shuai et al., A new multi-function global particle swarm optimization. Appl. Soft Comput. 49, 279–291 (2016)

    Article  Google Scholar 

  32. M.D. Ardakani, M. Khodadad, Identification of thermal conductivity and the shape of an inclusion using the boundary elements method and the particle swarm optimization algorithm. Inverse Probl. Sci. Eng. 17(7), 855–870 (2009)

    Article  MathSciNet  Google Scholar 

  33. S. Vakili, M.S. Gadala, Effectiveness and efficiency of particle swarm optimization technique in inverse heat conduction analysis. Numer. Heat Tranf. B-Fundam. 56(2), 119–141 (2009)

    Article  ADS  Google Scholar 

  34. N. Tian, J. Sun, W.B. Xu, C.H. Lai, Quantum-behaved particle swarm optimization with ring topology and its application in estimating temperature-dependent thermal conductivity. Numer. Heat Tranf. B-Fundam. 60(2), 73–95 (2011)

    Article  ADS  Google Scholar 

  35. Z.Z. He, J.K. Mao, X.S. Han, Non-parametric estimation of particle size distribution from spectral extinction data with PCA approach. Powder Technol. 325(1), 510–518 (2018)

    Article  Google Scholar 

  36. A.H. Gandomi, A.H. Alavi, Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4854 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  37. Y.T. Ren, H. Qi, X. Huang, W. Wang, L.M. Ruan, H.P. Tan, Application of improved krill herd algorithms to inverse radiation problems. Int. J. Therm. Sci. 103, 24–34 (2016)

    Article  Google Scholar 

  38. S.C. Sun, H. Qi, F.Z. Zhao, L.M. Ruan, B.X. Li, Inverse geometry design of two-dimensional complex radiative enclosures using krill herd optimization algorithm. Appl. Therm. Eng. 98, 1104–1115 (2016)

    Article  Google Scholar 

  39. H.A. Van den Vorst, BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  Google Scholar 

  40. E.E. Hofmann, A.G.E. Haskell, J.M. Klinck, C.M. Lascara, Lagrangian modelling studies of Antarctic krill (Euphasia superba) swarm formation. ICES J. Mar. Sci. 61(4), 617–631 (2004)

    Article  Google Scholar 

  41. H.J. Price, Swimming behavior of krill in response to algal patches: a mesocosm study. Limnol. Oceanogr. 34, 649–659 (1989)

    Article  ADS  Google Scholar 

  42. G. Boeing, Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction. Systems 4, 37 (2016)

    Article  Google Scholar 

  43. S.M. Yang, W.Q. Tao, Heat Transfer (in Chinese) (Higher Education Press, Beijing, 2006)

    Google Scholar 

Download references

Acknowledgements

The supports of this work by the National Natural Science Foundation of China (No. 51576053) and the Major National Scientific Instruments and Equipment Development Special Foundation of China (No. 51327803) are gratefully acknowledged. A very special acknowledgment is made to the editors and referees who make important comments to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S.C., Qi, H., Yu, X.Y. et al. Inverse Identification of Temperature-Dependent Thermal Properties Using Improved Krill Herd Algorithm. Int J Thermophys 39, 121 (2018). https://doi.org/10.1007/s10765-018-2442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2442-8

Keywords

Navigation