Skip to main content
Log in

Photothermal Mirror Method for the Study of Thermal Diffusivity and Thermo-Elastic Properties of Opaque Solid Materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We have carried out the theoretical and experimental time evolution and amplitude study of the photothermal mirror signal generated by focusing a laser beam on the surface of a suite of solid samples. Based on a theoretical model that resolves the thermal diffusivity equation and the equation for thermo-elastic deformations simultaneously, we have calculated the transient time evolution and amplitude of the signal. We observe the same time evolution pattern for samples as diverse as glass, quartz, metals, and synthetic ceramic oxides. The data have yielded a linear dependence between the time build-up of the thermal mirror and the inverse of the thermal diffusivity for all the samples. For moderate power levels, we also observe a linear behavior between the stationary value of the signal and the thermally induced phase shift value. From the calibration curves, we have determined the thermally induced phase and the thermal diffusivity coefficients of two prospective nuclear reactor control rod materials, dysprosium titanate (\(\hbox {Dy}_{2}\hbox {TiO}_{5}\)) and dysprosium dititanate (\(\hbox {Dy}_{2}\hbox {Ti}_{2}\hbox {O}_{7}\)) to be \(D = (7.0 \pm 0.4) \times 10^{-7} \mathrm{m^{2}\cdot s^{-1}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Kuo, M. Munidasa, Single-beam interferometry of a thermal bump. Appl. Opt. 29, 5326–5331 (1990)

    Article  ADS  Google Scholar 

  2. B.C. Li, Z. Zhen, S. He, Modulated photothermal deformation in solids. J. Phys. D Appl. Phys. 24, 2196–2201 (1991)

    Article  ADS  Google Scholar 

  3. T. Elperin, G. Rudin, Thermal mirror method for measuring physical properties of multilayered coatings. Int. J. Thermophys. 28, 60–82 (2007)

    Article  ADS  Google Scholar 

  4. N.G.C. Astrath, L.C. Malacarne, P.R.B. Pedreira, A.C. Bento, M.L. Baesso, J. Shen, Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids. Appl. Phys. Lett. 91, 191908 (2007)

    Article  ADS  Google Scholar 

  5. F. Sato, L.C. Malacarne, P.R.B. Pedreira, M.P. Belancon, R.S. Mendes, M.L. Baesso, N.G.C. Astrath, J. Shen, Time-resolved thermal mirror method: a theoretical study. J. Appl. Phys. 104, 053520 (2008)

    Article  ADS  Google Scholar 

  6. N.G.C. Astrath, L.C. Malacarne, V.S. Zanuto, M.P. Belancon, R.S. Mendes, M.L. Baesso, C. Jacinto, Finite-size effect on the surface deformation thermal mirror method. J. Opt. Soc. Am. B 28, 1735–1739 (2011)

    Article  ADS  Google Scholar 

  7. L.C. Malacarne, N.G.C. Astrath, G.V.B. Lukasievicz, E.K. Lenzi, M.L. Baesso, S.E. Bialkowski, Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization. Appl. Spectrosc. 65, 99–104 (2011)

    Article  ADS  Google Scholar 

  8. G.V.B. Lukasievicz, L.C. Malacarne, N.G.C. Astrath, V.S. Zanuto, L.S. Herculano, S.E. Bialkowski, A theoretical and experimental study of time-resolved thermal mirror with non-absorbing heat coupling fluids. Appl. Spectrosc. 66, 1461–1467 (2012)

    Article  ADS  Google Scholar 

  9. O.S. Aretegui, P.Y.N. Poma, L.S. Herculano, G.V.B. Lukasievicz, F.B. Guimaraes, L.C. Malacarne, M.L. Baesso, S.E. Bialkowski, N.G.C. Astrath, Combined photothermal lens and photothermal mirror characterization of polymers. Appl. Spectrosc. 68, 777–783 (2014)

    Article  ADS  Google Scholar 

  10. A. Marcano, G. Gwanmesia, M. King, D. Caballero, Determination of thermal diffusivity of opaque materials using the photothermal mirror method. Opt. Eng. 53, 127101 (2014). doi:10.1117/1.OE.53.12.127101

    Article  ADS  Google Scholar 

  11. A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, T. Catunda, Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement. J. Opt. Soc. Am. B 23, 1408–1413 (2006)

    Article  ADS  Google Scholar 

  12. A. Marcano, C. Loper, N. Melikechi, Pump probe mode mismatched Z-scan. J. Opt. Soc. Am. B 19, 119–124 (2002)

    Article  ADS  Google Scholar 

  13. J. Shen, R.D. Lowe, R.D. Snook, A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem. Phys. 165, 385–396 (1992). doi:10.1016/0301-0104(92)87053-C

    Article  Google Scholar 

  14. M.L. Baesso, J. Shen, R.D. Snook, Three dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time resolved measurements of thin-film spectra. J. Appl. Phys. 75, 3738–3748 (1994). doi:10.1063/1.356045

    Article  ADS  Google Scholar 

  15. D.R. Lide (ed.), CRC handbook of chemistry and physics, 86th edn. (CRC Press, Boca Raton, 2005) ISBN 0-8493-0486-5

  16. B.H.W.S. De Jong, R.G.C. Beerkens, P.A. van Nijnatten, Glass. Ullmann’s encyclopedia of industrial chemistry (2000). doi:10.1002/14356007.a12_365 ISBN3-527-30673-0

  17. R.H. Perry, D.W. Green (eds.), Perry’s chemical engineers’ handbook, 7th edn. (McGraw-Hill, New York, 1997). Table 1–4. ISBN 978-0-07-049841-9

  18. Y. Takahashi, E.F. Westrum Jr., Glassy carbon low-temperature thermodynamic properties. J. Chem. Thermodyn. 2, 847–854 (1970)

    Article  Google Scholar 

  19. http://www.tokaicarbon.co.jp/en/products/fine_carbon/gc/html

  20. C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014). doi:10.4236/wjm.2014.43009

    Article  ADS  Google Scholar 

  21. G. Panneerselvam, R.V. Krishnan, M.P. Antony, K. Nagarajan, T. Vasudevan, P.R.V. Rao, Thermophysical measurements on dysprosium and gadolinium titanates. J. Nucl. Sci. 327, 220–225 (2004)

    ADS  Google Scholar 

  22. V.D. Risovany, E.E. Varlashova, D.N. Suslov, Dysprosium titanate as an absorber material for control rods. J. Nucl. Sci. 281, 84–89 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

The synthetic polycrystalline dysprosium specimens, used in this study, were hot-pressed using the large-volume, Kawai-type multi-anvil high-pressure apparatus in the High-Pressure laboratory at the Mineral Physics Institute (MPI), in the Geosciences Department at the Stony Brook University, in New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristides Marcano.

Ethics declarations

Conflict of interest

The authors declare that there are not conflict of interest or bias in the present work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcano, A., Gwanmesia, G. & Workie, B. Photothermal Mirror Method for the Study of Thermal Diffusivity and Thermo-Elastic Properties of Opaque Solid Materials. Int J Thermophys 38, 136 (2017). https://doi.org/10.1007/s10765-017-2276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2276-9

Keywords

Navigation