Skip to main content
Log in

Photopyroelectric Characterization of Magnetic Nanofluids. Influence of Type and Size of Nanoparticles on the Thermal Parameters

  • CPPTA3
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The influence of type and size of nanoparticles on the thermal parameters of some magnetic nanofluids is investigated. Two types of carrier liquids (transformer oil and polypropylene glycol) were combined with two types of iron based magnetic nanoparticles (\(\hbox {Fe}_{3}\hbox {O}_{4}\) and \(\hbox {MnFe}_{2}\hbox {O}_{4})\). Different sizes (10 nm–80 nm) and shapes (spherical, octahedral or cubic) of nanoparticles were obtained depending on the oleic acid/oleylamine molar ratio, which drastically influences the nanocrystals growth rate. This influence is due to the different binding ability of the two stabilizers onto crystal facets. The average size of nanoparticles was 10 nm, 35 nm and 50 nm for \(\hbox {Fe}_{3}\hbox {O}_{4}\) and 10 nm, 20 nm and 80 nm for \(\hbox {MnFe}_{2}\hbox {O}_{4}\) at a concentration of 50 mg\({\cdot }\)ml\(^{-1}\) in all cases. The results obtained by PPE technique indicate that, at this concentration, the presence of the nanoparticles reduces the value of the thermal parameters of pure carrier liquids and both thermal diffusivity and effusivity decrease with increasing nanoparticles size, independently on the carrier liquid. The influence of the nanoparticles size is more pronounced for the thermal effusivity (relative change 24 %) compared with thermal diffusivity (relative change 7 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Dadarlat, Laser Phys. 19, 1330 (2009)

    Article  ADS  Google Scholar 

  2. D. Dadarlat, C. Neamtu, in Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments, ed. By E.M. Marin (Transworld Research Network, Trivandrum, Kerala, 2009)

  3. A. Sikorska, D. Dadarlat, B.B.J. Linde, M. Streza, C. Neamtu, A. Sliwinski, J. Phys. IV 137, 341 (2006)

    Google Scholar 

  4. D. Dadarlat, J. Therm. Anal. Calorim. 110, 27 (2012)

    Article  Google Scholar 

  5. D. Dadarlat, M. Streza, M.N. Pop, V. Tosa, S. Delenclos, S. Longuemart, A.H. Sahraoui, J. Therm. Anal. Calorim. 101, 397 (2010)

    Article  Google Scholar 

  6. D. Dadarlat, S. Longuemart, R. Turcu, M. Streza, L. Vekas, A.H. Sahraoui, Int. J. Thermophys. 35, 2032 (2014)

    Article  ADS  Google Scholar 

  7. D. Dadarlat, P.R.N. Misse, A. Maignan, E. Guilmeau, R. Turcu, L. Vekas, C. Tudoran, M. Depriester, A.H. Sahraoui, Int. J. Thermophys. 36, 2441 (2015)

    Article  ADS  Google Scholar 

  8. M. Marinelli, F. Mercuri, U. Zammit, R. Pizzoferrato, F. Scudieri, D. Dadarlat, Phys. Rev. B 49, 9523 (1994)

    Article  ADS  Google Scholar 

  9. J. Shen, A. Mandelis, Rev. Sci. Instrum. 66, 4999 (1995)

    Article  ADS  Google Scholar 

  10. J. Shen, A. Mandelis, H. Tsai, Rev. Sci. Instrum. 69, 197 (1998)

    Article  ADS  Google Scholar 

  11. J.A. Balderas-Lopez, A. Mandelis, J.A. Garcia, Rev. Sci. Instrum. 71, 2933 (2000)

    Article  ADS  Google Scholar 

  12. J.A. Balderas-Lopez, A. Mandelis, Rev. Sci. Instrum. 74, 700 (2003)

    Article  ADS  Google Scholar 

  13. D. Dadarlat, C. Neamtu, Meas. Sci. Technol. 17, 3250 (2006)

    Article  ADS  Google Scholar 

  14. M. Chirtoc, J.S. Antoniov, M. Egee, in Proceeding of 10-th International Conference on Photoacoustic and Photothermal Phenomena. (Rome, 1998), pp. 84–86

  15. S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, J. Am. Chem. Soc. 126, 273 (2004)

    Article  Google Scholar 

  16. M. Nakamura, S. Takekawa, K. Kitamura, Opt. Mater. 32, 1410 (2010)

    Article  ADS  Google Scholar 

  17. C. Neamtu, D. Dadarlat, M. Chirtoc, A.H. Sahraoui, S. Longuemart, D. Bicanic, Instrum. Sci. Technol. 34, 225 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the Ministry of Education Research and Youth of Romania, through the National Research Programs, PN-II-ID-PCE-2011-3-0036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tripon.

Additional information

Selected papers from Third Conference on Photoacoustic and Photothermal Theory and Applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadarlat, D., Craciunescu, I., Turcu, R. et al. Photopyroelectric Characterization of Magnetic Nanofluids. Influence of Type and Size of Nanoparticles on the Thermal Parameters. Int J Thermophys 38, 86 (2017). https://doi.org/10.1007/s10765-017-2227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2227-5

Keywords

Navigation