Skip to main content
Log in

Theoretical Study of the Conditions of Maximum Manifestation of the Error Due to Inhomogeneity of Thermocouple Legs

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The method of theoretical analysis of temperature ranges for the maximum manifestation of the error due to acquired thermoelectric inhomogeneity of thermocouple legs is proposed in this paper. The drift function of the reference function of a type K thermocouples in a ceramic insulation, that consisted of 1.2 mm diameter thermoelements after their exposure to 800 \(^{\circ }\)C for 10 000 h in an oxidizing atmosphere (air), is analyzed. The method takes into account various operating conditions to determine the optimal conditions for studying inhomogeneous thermocouples. The method can be applied for other types of thermocouples when taking into account their specific characteristics and the conditions that they have been exposed to.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Webster, Measurement, instrumentation, and sensors handbook. (CRCnetBase 1999). http://www.crcnetbase.com/isbn/9780415876179

  2. A. Glowacz, Z. Glowacz, Measurement (2016). doi:10.1016/j.measurement.2016.07.008

    Article  Google Scholar 

  3. H. Ashrafi, K. Shahbazian, S. Bidmeshki et al., Adv. Sci. Technol. Res. J. (2016). doi:10.12913/22998624/61925

    Article  Google Scholar 

  4. R.W. Maruda, G.M. Krolczyk, P. Nieslony et al., J. Manuf. Process. (2016). doi:10.1016/j.jmapro.2016.08.006

    Article  Google Scholar 

  5. J. Birch, Report. Benefit of Legal Metrology for the Economy and Society. A study for the International Committee of Legal Metrology (2003)

  6. J. Birch, Role and impact of legal metrology for consumer protection. ISO/COPOLCO Workshop 2012. http://www.iso.org/iso/livelinkgetfile?llNodeId=400882&llVolId=-2000

  7. V. Kočí, J. Kočí, T. Korecký et al., Meas. Sci. Rev. (2015). doi:10.1515/msr-2015-0013

    Article  Google Scholar 

  8. T. Habisreuther, T. Elsmann et al., Appl. Therm. Eng. (2015). doi:10.1016/j.applthermaleng.2015.08.096

  9. A. Glowacz, Z. Glowacz, Appl. Acoust. (2017). doi:10.1016/j.apacoust.2016.10.012

  10. S. Jun, O. Kochan, V. Kochan et al., Int. J. Thermophys. (2016). doi:10.1007/s10765-015-2025-x

    Article  Google Scholar 

  11. S. Jun, O. Kochan, Meas. Tech. (2015). doi:10.1007/s11018-015-0596-3

    Article  Google Scholar 

  12. L. Kortvelyessy, Thermoelement Praxis, 3rd edn. (Vulkan, Essen, 1998)

    Google Scholar 

  13. D.C. Ripple, K.M. Garrity, M. Araya et al., Metrologia (2007). doi:10.1088/0026-1394/44/1A/03007

    Article  Google Scholar 

  14. D.J. Southworth, in Temperature Calibration with Isotech Block Baths, Handbook of Isothermal Corporation Limited (1999), pp. 18–19

  15. K.C. Sloneker, Ceram. Ind. 159, 13 (2009)

    Google Scholar 

  16. G. Krapf, M. Schalles, T. Fröhlich, Measurement (2011). doi:10.1016/j.measurement.2010.10.015

  17. B. Khlevnoy, Y. Yamada, I. Grigoryeva et al., Int. J. Thermophys. (2011). doi:10.1007/s10765-011-1038-3

    Article  Google Scholar 

  18. A. Ivanova, S. Gerasimov, Meas. Tech. (2008). doi:10.1007/s11018-008-9067-4

    Article  Google Scholar 

  19. D. Zvizdic, D. Sestan, Int. J. Thermophys. (2015). doi:10.1007/s10765-015-1846-y

    Article  Google Scholar 

  20. A. Sachenko, V. Kochan, R. Kochan, et al., in In Proceedings of the International IEEE Conference on Instrumentation and Measurement Technology IMTC’2001(Budapest, 2001), pp. 869–874

  21. V.P. Pavlov, The Thermoelectric Inhomogeneity of Thermocouple Legs (Publishing House of Standards, Moscow, 1979)

    Google Scholar 

  22. I. Kyrenkov, Transactions of VNIIM (VNIIM, Moscow, 1976)

    Google Scholar 

  23. M. Holmsten, J. Ivarsson, R. Falk et al., Int. J. Thermophys. (2008). doi:10.1007/s10765-008-0418-9

    Article  Google Scholar 

  24. Y. Abdelaziz, F. Edler, Meas. Sci. Technol. (2009). doi:10.1088/0957-0233/20/5/055102

    Article  Google Scholar 

  25. M. Holmsten, S. Ljungblad, L. E. Josefson, in Proceedings of Joint International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science TEMPMEKO-2010, vol A, (Portoroz, Slovenia, 2010), p. 87

  26. D. Zvizdic, T. Veliki, in Proceedings of the XVIII IMEKO World Congress “Metrology for a Sustainable Development”, (Rio de Janeiro, 2006), pp. 2021–2025

  27. M. A. P. Castanho, C. R. Baldo, in Proceedings of the XX IMEKO World Congress Metrology for Green Growth, (Busan, 2012), pp. 9–14

  28. M. Hiti, J. Bojkovski, V. Batagelj et al., Electr. Rev. 72, 189 (2005)

  29. K.C. Sloneker, Int. J. Thermophys. (2011). doi:10.1007/s10765-011-0942-x

    Article  Google Scholar 

  30. J. Tamba, K. Yamazawa, S. Masuyama et al., Int. J. Thermophys. (2011). doi:10.1007/s10765-011-1084-x

    Article  Google Scholar 

  31. G. Zaid, Instrumentasi 27, 1 (2003)

    Google Scholar 

  32. S. Jun, O.V. Kochan, V.S. Jotsov, Meas. Tech. (2015). doi:10.1007/s11018-015-0709-z

    Article  Google Scholar 

  33. P. Pavlasek, S. Duris, R. Palencar, J. Phys.: Conf. Ser. (2015). doi:10.1088/1742-6596/588/1/012016

    Article  Google Scholar 

  34. E.S. Webster, D.R. White, H. Edgar, Int. J. Thermophys. (2015). doi:10.1007/s10765-014-1810-2

    Article  Google Scholar 

  35. N. Rogelberg, A. Nuzhnov, G. Pokrovskaya, et al., in Investigation of alloys for thermocouples. Proceedings of “Giprotsvetmetobrabotka”, No. XXIX, (Mettalurgy, Moscow), p. 33

  36. J. Stewart, Single Variable Calculus (Brooks/Cole, Boston, 2012)

    Google Scholar 

  37. G.M. Krolczyk, R.W. Maruda, P. Nieslony et al., Measurement (2016). doi:10.1016/j.measurement.2016.08.023

    Article  Google Scholar 

  38. N. Vasyl’kiv, O. Kochan, R.Kochan, et al, in Proceedings of the International Workshop IDAACS 2009, (Rende-Cosenza 2009), pp. 201–206

  39. S. Jun, O. Kochan, W. Chunzhi et al., Meas. Sci. Rev. (2015). doi:10.1515/msr-2015-0041

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Hubei Province of China (2014CFB605), Foundation of Wuhan Science and technology Bureau (2015030809020370), Doctoral Scientific Research Fund from Hubei University of Technology (No. BSQD14037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orest Kochan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Song, W., Kochan, O. et al. Theoretical Study of the Conditions of Maximum Manifestation of the Error Due to Inhomogeneity of Thermocouple Legs. Int J Thermophys 38, 88 (2017). https://doi.org/10.1007/s10765-017-2222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2222-x

Keywords

Navigation