Skip to main content
Log in

Thermal Conductivity Measurement of Anisotropic Biological Tissue In Vitro

  • Asian Thermophysical Properties Conference Papers
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The accurate determination of the thermal conductivity of biological tissues has implications on the success of cryosurgical/hyperthermia treatments. In light of the evident anisotropy in some biological tissues, a new modified stepwise transient method was proposed to simultaneously measure the transverse and longitudinal thermal conductivities of anisotropic biological tissues. The physical and mathematical models were established, and the analytical solution was derived. Sensitivity analysis and experimental simulation were performed to determine the feasibility and measurement accuracy of simultaneously measuring the transverse and longitudinal thermal conductivities. The experimental system was set up, and its measurement accuracy was verified by measuring the thermal conductivity of a reference standard material. The thermal conductivities of the pork tenderloin and bovine muscles were measured using the traditional 1D and proposed methods, respectively, at different temperatures. Results indicate that the thermal conductivities of the bovine muscle are lower than those of the pork tenderloin muscle, whereas the bovine muscle was determined to exhibit stronger anisotropy than the pork tenderloin muscle. Moreover, the longitudinal thermal conductivity is larger than the transverse thermal conductivity for the two tissues and all thermal conductivities increase with the increase in temperature. Compared with the traditional 1D method, results obtained by the proposed method are slightly higher although the relative deviation is below 5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Salmon, Int. J. Thermophys. 23, 431 (1996)

    Google Scholar 

  2. D. Salmon, Meas. Sci. Technol. 12, 89 (2001)

    Article  Google Scholar 

  3. C. Stacey, ASTM STP 1426 4, 131 (2002)

  4. J.H. Blackwell, Can. J. Phys. 34, 412 (1956)

    Article  Google Scholar 

  5. A. Alrtimi, M. Rouainia, D.A.C. Manning, Int. J. Heat Mass Transf. 72, 630 (2014)

    Article  Google Scholar 

  6. R.A. Perkins, R. McAllister, E.D. Sloan, M.S. Graboski, Therm. Conduct. 18, 273 (1984)

    Google Scholar 

  7. K.S. Kesav, S. Krishnamoorthy, S.V.S. Rao, in 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings, vol. 2 (2006), p. 915

  8. R. Coquard, D. Baillis, D. Quenard, Int. J. Heat Mass Transf. 49, 4511 (2006)

    Article  Google Scholar 

  9. R. Singh, N.S. Saxena, D.R. Chaudhary, J. Phys. D Appl. 18, 1 (1985)

    Article  Google Scholar 

  10. T. Log, M.M. Metallinou, Rev. Sci. Instrum. 63, 3966 (1992)

    Article  Google Scholar 

  11. X. Zhang, A. Degiovanni, D. Maillet, High Temp. High Press. 25, 577 (1993)

    Google Scholar 

  12. S.X. Cheng, Y.F. Jiang, X.G. Liang, Meas. Sci. Technol. 5, 1339 (1994)

    Article  Google Scholar 

  13. X.G. Liang, X.S. Ge, Y.P. Zhang, Phys. Med. Biol. 36, 1599 (1991)

    Article  Google Scholar 

  14. Svetozár Malinarič, Int. J. Thermophys. 34, 19531 (2013)

    Article  Google Scholar 

  15. H. Zhang, M.J. Li, W.Z. Fang, D. Dan, Z.Y. Li, W.Q. Tao, Appl. Therm. Eng. 72, 62 (2014)

    Article  Google Scholar 

  16. J.C. Chato, in ASME Symposium, vol. 16 (1968)

  17. H.F. Bowma, Heat Transfer in Medicine and Biology (Plemum, New York, 1985), p. 193

  18. J.W. Valvano, J.T. ALLEN, H.F. Bowman, J. Biomech. Eng. 106, 192 (1984)

    Article  Google Scholar 

  19. M.M. Chen, K.R. Holmes, V. Rupinskas, J. Biomech. Eng. 103, 253 (1981)

    Article  Google Scholar 

  20. H. Arkin, K.R. Holmes, M.M. Chen, J. Biomech. Eng. 108, 208 (1986)

    Article  Google Scholar 

  21. H. Arkin, K.R. Holmes, M.M. Chen, J. Biomech. Eng. 108, 54 (1986)

    Article  Google Scholar 

  22. H. Arkin, K.R. Holmes, M.M. Chen, J. Biomech. Eng. 9, 38 (1987)

    Article  Google Scholar 

  23. B. Ahattacharya, R.L. Mahajan, Physiol. Meas. 24, 769 (2003)

    Article  Google Scholar 

  24. W.J. Parker, R.J. Jenkins, C.P. Butler, J. Appl. Phys. 32, 1679 (1961)

    Article  Google Scholar 

  25. R. Buttner, B. Zimanowski, J. Blumm, L. Hagemann, J. Volcanol. Geotherm. Res. 80, 293 (1998)

    Article  Google Scholar 

  26. B. Nait-Ali, K. Haberko, H. Vesteghema, J. Absi, D.S. Smith, J. Eur. Ceram. Soc. 26, 3567 (2006)

    Article  Google Scholar 

  27. S.E. Gustafsson, J. Appl. Phys. 53, 6064 (1982)

    Article  Google Scholar 

  28. J.V. Beck, K.J. Arnold, Parameter Estimation in Engineering and Science (Wiley, New York, 1977)

  29. E.V. Davydov, I.A. Lubashevsky, V.A. Milyaev, R.F. Musin, Biomed. Eng. 2, 1 (2008)

    Google Scholar 

  30. L’udovít Kubicár, Vlastimil Bohác, Meas. Sci. Technol. 11, 252 (2000)

    Article  Google Scholar 

  31. J.C. Chato, Heat Transf. Med. Biol. 1, 167 (1985)

    Google Scholar 

  32. Q.L. Xia, Y.Q. Xia, Beijing Biomed. Eng. 22, 37 (2003)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51276013) and Beijing Engineering Research Center for Energy Saving and Environmental Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yue.

Additional information

Selected paper from Asian Thermophysical Properties Conference Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, K., Cheng, L., Yang, L. et al. Thermal Conductivity Measurement of Anisotropic Biological Tissue In Vitro. Int J Thermophys 38, 92 (2017). https://doi.org/10.1007/s10765-017-2214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2214-x

Keywords

Navigation