Skip to main content
Log in

Measurement of the Inhomogeneity in Type B and Land–Jewell Noble-Metal Thermocouples

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Inhomogeneity is the largest contributor to uncertainty in temperature measurements made with thermocouples, and the knowledge of inhomogeneity is essential if low-uncertainty measurements are required. Inhomogeneity is a particular problem for long-term applications at temperatures near or above 1500 \(^{\circ }\hbox {C}\), where pairs of alloyed noble-metal thermocouples must be used and the alloy components and potential contaminants become very mobile and cause large deviations in the Seebeck coefficient. While changes in inhomogeneity are a known and well-studied problem in noble-metal alloys at temperatures below 1100 \(^{\circ }\hbox {C}\), the effects are not well quantified at higher temperatures. This paper reports the first detailed measurements of inhomogeneity in a number of Type B and Land–Jewell thermocouples exposed to either short-term calibration up to 1600 \(^{\circ }\hbox {C}\) or long-term in situ measurements for a period of approximately 3000 h at 1600 \(^{\circ }\hbox {C}\). The inhomogeneity is measured in a high-resolution scanner operating over the range from 600 \(^{\circ }\hbox {C}\) to 900 \(^{\circ }\hbox {C}\). The results show that drifts of between 0.2 % and 0.6 % can be expected for reversible crystallographic and oxidation effects, whereas drift caused by irreversible contamination effects can be expected to be between 0.6 % and 1.1 %. It is also shown that the deviations in emfs caused by irreversible homogeneities in these thermocouples scale approximately linearly with temperature. This scalability allows uncertainties assessed at one temperature, to be extrapolated to other temperatures. Additionally it is shown that a preconditioning anneal at 1100 \(^{\circ }\hbox {C}\) should be applied both before and after calibration to remove undesirable crystallographic and rhodium-oxidation effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.V. Pearce, H. Ogura, M. Izuchi, G. Machin, Metrologia 46, 743–749 (2009)

    Article  Google Scholar 

  2. H. Ogura, M. Izuchi, M. Arai, Int. J. Thermophys. 29, 210–221 (2008)

    Article  ADS  Google Scholar 

  3. J.V. Pearce, C.J. Elliott, A. Greenen, D. Campo, J.M. Martin, C. Garcia Izquierdo, P. Pavlasek, G. Nemecek, T. Deuze, G. Machin, Meas. Sci. Technol. 26, 10 (2015)

    Article  Google Scholar 

  4. E.S. Webster, R.S. Mason, A. Greenen, J. Pearce, Int. J. Thermophys. 36, 2922–2939 (2015)

    Article  ADS  Google Scholar 

  5. E.S. Webster, Int. J. Thermophys. 36, 1909–1924 (2015)

    Article  ADS  Google Scholar 

  6. P. Kinzie, Thermocouple Temperature Measurements, 1st edn. (Wiley, New York, 1973)

    Google Scholar 

  7. A.G. Metcalfe, Br. J. Appl. Phys. 1, 256–258 (1950)

    Article  ADS  Google Scholar 

  8. E.H. McLaren, E.G. Murdock, in Temperature, Its Measurement and Control, Science and Industry, vol. 5, part 2, ed. by J.F. Schooley (Instrument Society of America, Pittsburgh, 1982), pp. 953–975

    Google Scholar 

  9. EURAMET, Calibration of thermocouples—cg-8 ver.2.1 (EURAMET, 2011)

  10. R.E. Bentley, Theory and Practice of Thermoelectric Thermometry, 1st edn. (Springer, Singapore, 1998)

    Google Scholar 

  11. E.H. McLaren, E.G. Murdock, in Temperature, Its Measurement and Control, Science and Industry, vol. 4, part 3, ed. by H.H. Plumb (Instrument Society of America, Pittsburgh, 1972), pp. 1543–1560

  12. C.P. Flynn, Phys. Rev. 171, 682–698 (1968)

    Article  ADS  Google Scholar 

  13. R.C. Bradley, Phys. Rev. 117, 1204–1207 (1960)

    Article  ADS  Google Scholar 

  14. M.S.A. Karunaratne, R.C. Reed, Acta Materialia 51, 2905–2919 (2003)

    Article  Google Scholar 

  15. T. Li, E.A. Marquis, P.A.J. Bagot, S.C. Tsang, G.D.W. Smith, Catal. Today 175, 552–557 (2011)

    Article  Google Scholar 

  16. J. Sojka, V. Vodárek, J. Sobotka, M. Dubský, J. Less Common Met. 171, 41–50 (1991)

    Article  Google Scholar 

  17. M. Rubel, M. Pszonicka, M.F. Ebel, A. Jablonski, W. Palczewska, J. Less Common Met. 125, 7–24 (1986)

    Article  Google Scholar 

  18. H. Jehn, J. Less Common Met. 100, 321–339 (1984)

    Article  Google Scholar 

  19. C.A. Krier, R.I. Jaffee, J. Less Common Met. 5, 411–431 (1963)

    Article  Google Scholar 

  20. R.E. Bentley, Int. J. Thermophys. 6, 83–99 (1985)

    Article  ADS  Google Scholar 

  21. E.D. Zysk, in Temperature, Its Measurement and Control Science and Industry, vol. 3, part 2, ed. by C.M. Herzfeld (Instrument Society of America, Pittsburgh, 1962), pp. 135–155

  22. A. Nakano, J. Bennett, J. Nakano, Corros. Sci. 103, 30–41 (2016)

    Article  Google Scholar 

  23. M.S. Rana, K. Ravindranath, N. Tanoli, Eng. Failure Anal. 55, 79–86 (2015)

    Article  Google Scholar 

  24. F. Jahan, M. Ballico, Int. J. Thermophys. 28, 1832–1842 (2007)

    Article  ADS  Google Scholar 

  25. F. Jahan, M. Ballico, Int. J. Thermophys. 31, 1544–1553 (2010)

    Article  ADS  Google Scholar 

  26. R.E. Bentley, Measurement 23, 35–46 (1998)

    Article  Google Scholar 

  27. K.T. Jacob, S. Priya, Y. Waseda, Bull. Mater. Sci. 21, 99–103 (1998)

    Article  Google Scholar 

  28. F. Edler, P. Ederer, in Temperature, Its Measurement and Control in Science and Industry, vol. 8, part 1, ed. by C.W. Meyer (AIP, Melville, 2013), pp. 532–537

  29. E.S. Webster, D.R. White, H. Edgar, Int. J. Thermophys. 36, 444–466 (2014)

    Article  ADS  Google Scholar 

  30. G. Machin, K. Anhalt, F. Edler, J. Pearce, M. Sadli, R. Strnad, E. Vuelban, 16th International Congress of Metrology (EDP Sciences, 2013)

  31. E.S. Webster, D.R. White, Metrologia 52, 130–144 (2015)

    Article  ADS  Google Scholar 

  32. ASTM, Standard Guide for Temperature Electromotive Force (EMF) Tables for Non-Letter Designated Thermocouple Combinations, vol. 1751 (ASTM, 2000)

  33. G.W. Burns, M.G. Scroger, G.F. Strouse, M.C. Croarkin, W.F. Guthrie, Temperature-electromotive Force Reference Functions And Tables For The Letter-designated Thermocouple Types Based On The ITS-90, National Institute of Standards and Technology (NIST) Monograph 175 (U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, 1993)

  34. E.S. Webster, F. Edler, Submitted to TEMPMEKO (2016)

  35. J.C. Chaston, Platin. Met. Rev. 10, 91–93 (1966)

    Google Scholar 

  36. A. Roy, J. Ghose, Mater. Res. Bull. 33, 547–551 (1998)

    Article  Google Scholar 

  37. H. Leiva, R. Kershaw, K. Dwight, A. Wold, Mater. Res. Bull. 17, 1539–1544 (1982)

    Article  Google Scholar 

  38. G.W. Burns, J.S. Gallagher, Precision Measurement and Calibration: Selected NBS Papers on Temperature, vol. 2, pp. 290–306 (1968)

  39. R.E. Bedford, Rev. Sci. Instrum. 36, 1571–1580 (1965)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge the financial assistance and resources provided by the NPL (UK) in completing this work, the work of R. Mason (MSL, NZ) in the design of the high-temperature scanner, and invaluable discussions with D. R. White (MSL, NZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Webster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, E.S., Greenen, A. & Pearce, J. Measurement of the Inhomogeneity in Type B and Land–Jewell Noble-Metal Thermocouples. Int J Thermophys 37, 70 (2016). https://doi.org/10.1007/s10765-016-2074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2074-9

Keywords

Navigation