Skip to main content
Log in

Alternative Methods of Blackbody Thermodynamic Temperature Measurement Above Silver Point

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Presently, absolute radiometry is the main method of thermodynamic temperature determination above the silver point. The importance of such measurements has increased, as a large international project is underway aimed at assigning thermodynamic temperatures to high-temperature fixed points (HTFPs). All participants are using filter radiometers calibrated against an absolute cryogenic radiometer which, therefore, will be the basis of the provided thermodynamic temperatures of the fixed points. However, such a unified approach may lead to systematic errors (if any) common to all participants. There are methods, providing an alternative to absolute radiometry, which allow the determination of blackbody thermodynamic temperatures using relative measurements. Alternative methods, even if they have lower accuracy than absolute radiometry, could disclose some possible unrecognized systematic errors, or, on the contrary, could confirm the results obtained using absolute radiometry and increase confidence of the thermodynamic temperature determination. One such method, known as the method of ratios (i.e., double wavelength technique), is based on measuring the ratios of fluxes emitted by a blackbody in separate spectral ranges at two temperatures. This approach has been developed at VNIIOFI, but its realization met serious technical difficulties. Modern sensors with improved sensitivity and stability, extremely reproducible HTFP blackbodies, and significant progress in computational methods and computer performance provide a new chance to realize this approach with sufficient accuracy. Another method is based on comparing the ratio of fluxes measured at two wavelengths for a high-temperature blackbody with that measured for synchrotron radiation. This article overviews possibilities of the alternative methods for determination of blackbody thermodynamic temperatures by means of relative radiometry to attract attention of the thermometry and radiometry communities to the importance of international cooperation for realization of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Machin, P. Bloembergen, J. Hartmann, M. Sadli, Y. Yamada, Int. J. Thermophys. 28, 1976 (2007)

    Article  ADS  Google Scholar 

  2. G. Machin, K. Anhalt, P. Bloembergen, M. Sadli, Y. Yamada, E. Woolliams, in Proceedings of Ninth International Temperature Symposium (Los Angeles), Temperature: Its Measurement and Control, ed. by C.W. Meyer. Science and Industry, vol. 8, A.I.P. Conference Proceedings 1552 (AIP, Melville, NY, 2013), pp. 317–322

  3. Y. Yamada, B. Khlevnoy, Y. Wang, T. Wang, K. Anhalt, Metrologia 43, S140 (2006)

    Article  ADS  Google Scholar 

  4. G. Machin, P. Bloembergen, K. Anhalt, J. Hartmann, M. Sadli, P. Saunders, E. Woolliams, Y. Yamada, H. Yoon, Int. J. Thermophys. 31, 1779 (2010)

    Article  ADS  Google Scholar 

  5. E.R. Woolliams, M.R. Dury, T.A. Burnitt, P.E.R. Alexander, R. Winkler, W.S. Hartree, S.G.R. Salim, G. Machin, Int. J. Thermophys. 32, 1 (2011)

    Article  ADS  Google Scholar 

  6. H.W. Yoon, C.E. Gibson, G.P. Eppeldauer, A.W. Smith, S.W. Brown, K.R. Lykke, Int. J. Thermophys. 32, 2217 (2011)

    Article  ADS  Google Scholar 

  7. V.R. Gavrilov, B.B. Khlevnoy, D.A. Otryaskin, I.A. Grigorieva, M.L. Samoylov, V.I. Sapritsky, in Proceedings of Ninth International Temperature Symposium (Los Angeles), Temperature: Its Measurement and Control, ed. by C.W. Meyer. Science and Industry, vol. 8, A.I.P. Conference Proceedings 1552 (AIP, Melville, NY, 2013), pp. 329–334

  8. J. Hartmann, Phys. Rep. 469, 205 (2009)

    Article  ADS  Google Scholar 

  9. K.S. Wulfson, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki (J. Exp. Theor. Phys.) 21, 507 (1951). [in Russian]

    Google Scholar 

  10. V.I. Sapritskii, Metrologia 27, 53 (1990)

    Article  ADS  Google Scholar 

  11. A.V. Prokhorov, S.N. Mekhontsev, V.I. Sapritsky, in Proceedings of TEMPMEKO ’99, 7th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by J.F. Dubbeldam, M.J. de Groot (Edauw Johannissen bv, Delft, 1999), pp. 698–703

  12. E.R. Woolliams, R. Winkler, S.G.R. Salim, P.M. Harris, I.M. Smith, Int. J. Thermophys. 30, 144 (2009)

    Article  ADS  Google Scholar 

  13. P. Saunders, Int. J. Thermophys. 35, 417 (2014)

    Article  ADS  Google Scholar 

  14. R.P. Madden, T.R. O’Brian, A.C. Parr, R.D. Saunders, V.I. Sapritsky, Metrologia 32, 425 (1995/96)

  15. L.P. Boivin, C. Bamber, A.A. Gaertner, R.K. Gerson, D.J. Woods, E.R. Woolliams, J. Mod. Opt. 57, 1648 (2010)

    Article  ADS  MATH  Google Scholar 

  16. A.F. Kotyuk, L.S. Lovinskii, L.N. Samoilov, V.I. Sapritskii, Meas. Tech. 18, 75 (1975)

  17. B.B. Khlevnoi, Meas. Tech. 44, 308 (2001)

  18. JCGM 101:2008. Evaluation of measurement data—Supplement 1 to the “Guide to the expression of uncertainty in measurement”—Propagation of distributions using a Monte Carlo method (JCGM: Joint Committee for Guides in Metrology, 2008)

  19. F. Sakuma, M. Kobayashi, in Proceedings of TEMPMEKO ’96, 6th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by P. Marcarino (Levrotto and Bella, Torino, 1997), pp. 305–310

  20. P. Saunders, D.R. White, Metrologia 40, 195 (2003)

    Article  ADS  Google Scholar 

  21. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, London, 1986)

    Google Scholar 

  22. SCHOTT Optical Filter Glass. Properties (2013), http://www.schott.com/advanced_optics/english/download/schott-optical-filter-glass-properties-2013-eng.pdf. Accessed 13 November 2014

  23. S.A. Ogarev, B.B. Khlevnoy, M.L. Samoylov, V.I. Shapoval, V.I. Sapritsky, M.K. Sakharov, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić, L.G. Bermanec, T. Veliki, T. Stašić (FSB/LPM, Zagreb, Croatia, 2004), pp. 569–574

  24. M. Clerc, Particle Swarm Optimization (Wiley-ISTE, London, 2006)

    Book  MATH  Google Scholar 

  25. J.J. Moré, B.S. Garbow, K.E. Hillstrom, User Guide for MINPACK-1. Report ANL-80-74 (Argonne National Laboratory, Argonne, IL, 1980), http://cds.cern.ch/record/126569/files/CM-P00068642.pdf. Accessed 14 Nov 2014

  26. J. Schwinger, Phys. Rev. 75, 1912 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. J.R. Stevenson, H. Ellis, R. Bartlett, Appl. Opt. 12, 2284 (1973)

    Article  Google Scholar 

  28. P.-S. Shaw, U. Arp, K.R. Lykke, Phys. Rev. Spec. Top. Accel. Beams 9, 070701 (2006)

    Article  ADS  Google Scholar 

  29. R.D. Klein, R. Taubert, R. Thornagel, J. Hollandt, G. Ulm, Metrologia 46, 359 (2009)

    Article  ADS  Google Scholar 

  30. R. Klein, R. Thornagel, G. Ulm, Metrologia 47, R33 (2010)

    Article  ADS  Google Scholar 

  31. R.P. Brent, Comput. J. 14, 422 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  32. R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M.V. Hartrott, K. Holldack, G. Wüstefeld, Phys. Rev. Spec. Top. Accel. Beams 11, 110701 (2008)

    Article  ADS  Google Scholar 

  33. R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, K. Buerkmann-Gehrlein, J. Feikes, M.V. Hartrott, K. Holldack, J. Rahn, in Proceedings of EPAC’08—11th European Particle Accelerator Conference (Genoa, Italy, 2008), pp. 2055–2057

Download references

Acknowledgments

The work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Khlevnoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, A., Sapritsky, V., Khlevnoy, B. et al. Alternative Methods of Blackbody Thermodynamic Temperature Measurement Above Silver Point. Int J Thermophys 36, 252–266 (2015). https://doi.org/10.1007/s10765-014-1826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1826-7

Keywords

Navigation