Skip to main content
Log in

Thermal Characteristics of an Aluminum Thin Film due to Temperature Disturbance at Film Edges

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Phonon transport in an aluminum thin film is simulated due to a temperature disturbance across the film. The Boltzmann equation is introduced to formulate the radiative transport in the electron and lattice sub-systems. The transient and frequency dependence of the phonon transport is considered, and dispersion relations are accommodated to account for the group velocities in the analysis. Electron-phonon coupling is employed to couple the energy transport across the electron and lattice sub-systems. An equivalent equilibrium temperature is presented to assess the characteristics of the phonon intensity in the film. Temperature predictions are validated with data presented in a previous study. It is found that the equivalent equilibrium temperature differs significantly from that obtained from the two-equation model. The film thickness influences the transport characteristics of the film, in which case the time to reach an almost quasi-steady temperature is shorter for the thin film (\(L_{x}= 0.25 \,\upmu \hbox {m}\), where \(L_{x}\) is the film thickness) than that corresponding to the thick film (\(L_{x}= 2 \,\upmu \hbox {m}\)). In the diffusion limit (when the Knudsen number \(Kn=\varLambda /{L_x }\rightarrow 0\), where \(\varLambda \) is the mean free path), it is demonstrated that the radiative transport equation reduces to the formulation of the two-equation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.S. Yilbas, A.Y. Al-Dweik, S. Bin, Mansour. Phys. B 406, 1550 (2011)

    Article  ADS  Google Scholar 

  2. B.S. Yilbas, S. Bin Mansour, Numer. Heat Transf. Part A 64, 800 (2013)

    Article  Google Scholar 

  3. S. Bin Mansoor, B.S. Yilbas, Opt. Laser Technol. 44, 43 (2012). doi:10.1557/PROC-639-G6.38

    Article  ADS  Google Scholar 

  4. J.M. Hayes, M. Kuball, Y. Shi, J.H. Edgar, Raman Analysis of Single Crystalline Bulk Aluminum Nitride: Temperature Dependence of the Phonon Frequencies, in MRS Proceedings (2000), doi:10.1557/PROC-639-G6.38

  5. D.Y. Song, M. Holtz, A. Chandolu, S.A. Nikishin, E.N. Mokhov, Y. Makarov, H. Helava, Appl. Phys. Lett. 89, 021901 (2006)

    Article  ADS  Google Scholar 

  6. V. Samvedi, V. Tomar, J. Appl. Phys. 114, 034312 (2013)

    Article  ADS  Google Scholar 

  7. M. Bickermann, B.M. Epelbaum, P. Heimann, Z.G. Herro, A. Winnacker, Appl. Phys. Lett. 86, 131904 (2005)

    Article  ADS  Google Scholar 

  8. S.S. Ng, Z. Hassan, H. Abu Hassan, Appl. Phys. Lett. 90, 081902 (2007)

    Article  ADS  Google Scholar 

  9. S. Mizuno, N. Nishiguchi, J. Phys. Condens. Matter. 21, 195303 (2009)

    Article  ADS  Google Scholar 

  10. Y. Chen, M. Chu, L. Wang, X. Bao, Y. Lin, J. Phys. Status Solidi A 208, 1879 (2011)

    Article  Google Scholar 

  11. H.S. Huang, A.K. Roy, V. Varshney, J.L. Wohlwend, S.A. Putnam, Int. J. Therm. Sci. 59, 17 (2012)

    Article  Google Scholar 

  12. N. Donmezer, S. Graham, Int. J. Therm. Sci. 76, 235 (2014)

    Article  Google Scholar 

  13. A. Pattamatta, Int. J. Therm. Sci. 49, 1485 (2010)

    Article  Google Scholar 

  14. L.-C. Liu, M.-J. Huang, Int. J. Therm. Sci. 49, 1547 (2010)

    Article  Google Scholar 

  15. B.S. Yilbas, S. Bin Mansour, Phys. B 407, 4643 (2012)

    Article  ADS  Google Scholar 

  16. B.S. Yilbas, S. Bin Mansour, Transp. Theory Stat. Phys. 42, 21 (2013)

    Article  ADS  MATH  Google Scholar 

  17. R. Stedman, G. Nilsson, Phys. Rev. 145, 492 (1966)

    Article  ADS  Google Scholar 

  18. A.C. Bouley, N.S. Mohan, D.H. Damon, in Thermal Conductivity, vol. 14, ed. by P.G. Klemens, T.K. Chu (Springer, New York, 1976), p. 81

    Chapter  Google Scholar 

  19. A. Majumdar, J. Heat Transfer 115, 7 (1993)

    Article  Google Scholar 

  20. B.S. Yilbas, Int. J. Heat Mass Transfer 49, 2227 (2006)

    Article  MATH  Google Scholar 

  21. B.S. Yilbas, S. Bin Mansour, Phys. B 426, 79 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through Project No. RG1301

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Sami Yilbas.

Appendix 1: Diffusive Limit Consideration of Radiative Transport Energy

Appendix 1: Diffusive Limit Consideration of Radiative Transport Energy

In the diffusion limit when the Knudsen number \(Kn\;=\;\varLambda /L_x \rightarrow \;0\) (where \(\varLambda \) is the mean free path and \(L_x \) is the film thickness), Eqs. 3 and 4 should reduce to the two-equation model. This is can be verified as follows. After multiplying Eqs. 3 and 4 throughout by \(2\pi \mu \hbox {d}\mu \) and then integrating from \(-\)1 to 1, it yields

$$\begin{aligned}&\frac{2\pi }{v_{\mathrm{p}} }\int _{-1}^1 {\mu \frac{\partial I_{\mathrm{p}} }{\partial t}\hbox {d}\mu } +2\pi \int _{-1}^1 {\mu ^{2}\frac{\partial I_{\mathrm{p}} }{\partial x}\hbox {d}\mu }\nonumber \\&\quad =\frac{2\pi \left( {\int _{-1}^1 {\mu \hbox {d}\mu } } \right) \left( {\frac{1}{2}\int _{-1}^1 {I_{\mathrm{p}} \hbox {d}\mu } } \right) -2\pi \int _{-1}^1 {\mu I_{\mathrm{p}} \hbox {d}\mu } }{\varLambda _{\mathrm{p}} } \nonumber \\&\quad \quad -2\pi \frac{G}{4\pi }\left( {T_{\mathrm{p}} -T_{\mathrm{e}} } \right) \left( {\int _{-1}^1 {\mu \hbox {d}\mu } } \right) ,\end{aligned}$$
(34)
$$\begin{aligned}&\frac{2\pi }{v_{\mathrm{e}} }\int _{-1}^1 {\mu \frac{\partial I_{\mathrm{e}} }{\partial t}\hbox {d}\mu } +2\pi \int _{-1}^1 {\mu ^{2}\frac{\partial I_{\mathrm{e}} }{\partial x}\hbox {d}\mu }\nonumber \\&\quad =\frac{2\pi \left( {\int _{-1}^1 {\mu \hbox {d}\mu } } \right) \left( {\frac{1}{2}\int _{-1}^1 {I_{\mathrm{e}} \hbox {d}\mu } } \right) -2\pi \int _{-1}^1 {\mu I_{\mathrm{e}} \hbox {d}\mu } }{\varLambda _{\mathrm{e}} } \nonumber \\&\quad \quad -2\pi \frac{G}{4\pi }\left( {T_{\mathrm{p}} -T_{\mathrm{e}} } \right) \left( {\int _{-1}^1 {\mu \hbox {d}\mu } } \right) . \end{aligned}$$
(35)

However, the second term on the left-hand-side needs some elaboration. In the diffusive limit, the behavior of \(I_{\mathrm{e,p}} \left( {x,\mu ,t} \right) \) is mainly linear in \(\mu \). This means that we may neglect the terms of order 2 or higher in the Taylor series expansion of \(I_{\mathrm{e,p}} \left( {x,\mu ,t} \right) \) in \(\mu \):

$$\begin{aligned} I_{\mathrm{e,p}} \left( {x,\mu ,t} \right) \;&= \;I_{\mathrm{e,p}} \left( {x,0,t} \right) \;+\;\mu \left. {\frac{\partial I_{\mathrm{e,p}} }{\partial \mu }} \right| _{\mu =0} \;+\;O\left( \mu \right) \nonumber \\&\approx I_{\mathrm{e,p}}^\mathrm{o} \left( {x,t} \right) +\mu \left. {\frac{\partial I_{\mathrm{e,p}} }{\partial \mu }} \right| _{\mu =0}. \end{aligned}$$
(36)

This is because \(I_{\mathrm{e,p}}^\mathrm{o} \left( {x,t} \right) \;=\;\frac{1}{2}\int _{-1}^1 {I_{\mathrm{e,p}} \left( {x,\mu ,t} \right) \hbox {d}\mu } \;\approx \;I_{\mathrm{e,p}} \left( {x,0,t} \right) +\;\frac{1}{2}\) \(\left( {\int _{-1}^1 {\mu \hbox {d}\mu } } \right) \left. {\frac{\partial I_{\mathrm{e,p}} }{\partial \mu }} \right| _{\mu =0} =\;I_{\mathrm{e,p}} \left( {x,0,t} \right) .\)

Then,

$$\begin{aligned} 2\pi \int _{-1}^1 {\mu ^{2}\frac{\partial I_{\mathrm{e,p}} }{\partial x}\hbox {d}\mu } \;&= \;2\pi \int _{-1}^1 {\mu ^{2}\frac{\partial }{\partial x}\left( {I_{\mathrm{e,p}}^\mathrm{o} \left( {x,t} \right) \;+\;\mu \left. {\frac{\partial I_{\mathrm{e,p}} }{\partial \mu }} \right| _{\mu =0} } \right) \hbox {d}\mu } \nonumber \\&= \;2\pi \int _{-1}^1 {\mu ^{2}\frac{\partial I_{\mathrm{e,p}}^\mathrm{o} \left( {x,t} \right) }{\partial x}\hbox {d}\mu } \;+\;2\pi \frac{\partial }{\partial x}\left( {\left. {\frac{\partial I_{\mathrm{e,p}} }{\partial \mu }} \right| _{\mu =0} } \right) \int _{-1}^1 {\mu ^{3}\hbox {d}\mu } \nonumber \\&= 2\pi \frac{2}{3}\frac{\partial I_{\mathrm{e,p}}^\mathrm{o} \left( {x,t} \right) }{\partial x}. \end{aligned}$$
(37)

Since \(\frac{C_{\mathrm{e,p}} v_{\mathrm{e,p}} T_{\mathrm{e,p}} }{4\pi }\;=\;I_{\mathrm{e,p}}^\mathrm{o} \left( {x,t} \right) \;=\;\frac{1}{2}\int _{-1}^1 {I_{\mathrm{e,p}} \left( {x,\mu ,t} \right) {}\hbox {d}\mu } \), so that finally

$$\begin{aligned} 2\pi \int _{-1}^1 {\mu ^{2}\frac{\partial I_{\mathrm{e,p}} }{\partial x}\hbox {d}\mu } \;=\;2\pi \frac{2}{3}\frac{\hbox {d}I_{\mathrm{e,p}}^\mathrm{o} }{\hbox {d}T_{e,p} }\frac{\partial T_{\mathrm{e,p}} }{\partial x}. \end{aligned}$$

Equations 34 and 35 are now simplified to

$$\begin{aligned} \frac{1}{v_{\mathrm{p}} }\frac{\partial {{q}_{\mathrm{p}}^{\prime \prime }} }{\partial t}+\frac{4\pi }{3}\frac{\hbox {d}I_{\mathrm{p}}^\mathrm{o} }{\hbox {d}T_{\mathrm{p}} }\frac{\partial T_{\mathrm{p}} }{\partial x}=\frac{0-{{q}_{\mathrm{p}}^{\prime \prime }} }{\varLambda _{\mathrm{p}} }-0 \end{aligned}$$
(38)

and

$$\begin{aligned} \frac{1}{v_{\mathrm{e}} }\frac{\partial {{q}_{\mathrm{e}}^{\prime \prime }} }{\partial t}+\frac{4\pi }{3}\frac{\hbox {d}I_{\mathrm{e}}^\mathrm{o} }{\hbox {d}T_{\mathrm{e}} }\frac{\partial T_{\mathrm{e}} }{\partial x}=\frac{0-{{q}_{\mathrm{e}}^{\prime \prime }} }{\varLambda _{\mathrm{e}} }-0+0 \end{aligned}$$
(39)

or

$$\begin{aligned} \frac{\varLambda _{\mathrm{p}} }{v_{\mathrm{p}} }\frac{\partial {{q}_{\mathrm{p}}^{\prime \prime }} }{\partial t}+{{q}_{\mathrm{p}}^{\prime \prime }} =-\frac{C_{\mathrm{p}} v_{\mathrm{p}} \varLambda _{\mathrm{p}} }{3}\frac{\partial T_{\mathrm{p}} }{\partial x} \end{aligned}$$
(40)

and

$$\begin{aligned} \frac{\varLambda _{\mathrm{e}} }{v_{\mathrm{e}} }\frac{\partial {{q}_{\mathrm{e}}^{\prime \prime }} }{\partial t}+{{q}_{\mathrm{e}}^{\prime \prime }} =-\frac{C_{\mathrm{e}} v_{\mathrm{e}} \varLambda _{\mathrm{e}} }{3}\frac{\partial T_{\mathrm{e}} }{\partial x}. \end{aligned}$$
(41)

The kinetic theory formula for the thermal conductivity is given as

$$\begin{aligned} k_{\mathrm{p}} =\frac{C_{\mathrm{p}} v_{\mathrm{p}} \varLambda _{\mathrm{p}} }{3},\qquad k_{\mathrm{e}} =\frac{C_{\mathrm{e}} v_{\mathrm{e}} \varLambda _{\mathrm{e}} }{3}. \end{aligned}$$

Hence, Eqs. 39 and 40 can be transformed into

$$\begin{aligned} \frac{\varLambda _{\mathrm{p}} }{v_{\mathrm{p}} }\frac{\partial {{q}_{\mathrm{p}}^{\prime \prime }} }{\partial t}+{{q}_{\mathrm{p}}^{\prime \prime }} =-k_{\mathrm{p}} \frac{\partial T_{\mathrm{p}} }{\partial x} \end{aligned}$$
(42)

and

$$\begin{aligned} \frac{\varLambda _{\mathrm{e}} }{v_{\mathrm{e}} }\frac{\partial {{q}_{\mathrm{e}}^{\prime \prime }} }{\partial t}+{{q}_{\mathrm{e}}^{\prime \prime }} =-k_{\mathrm{e}} \frac{\partial T_{\mathrm{e}} }{\partial x}. \end{aligned}$$
(43)

To eliminate \({{q}_{\mathrm{p}}^{\prime \prime }} \) and \({{q}_{\mathrm{e}}^{\prime \prime }} \) between Eqs. 40 and 42 as well as Eqs. 41 and 43, one can proceed as follows. After differentiating Eqs. 41 and 43 once with respect to \(x\), it gives

$$\begin{aligned} \frac{\varLambda _{\mathrm{p}} }{v_{\mathrm{p}} }\frac{\partial }{\partial t}\left( {\frac{\partial {{q}_{\mathrm{p}}^{\prime \prime }} }{\partial x}} \right) +\frac{\partial {{q}_{\mathrm{p}}^{\prime \prime }} }{\partial x}=-k_{\mathrm{p}} \frac{\partial ^{2}T_{\mathrm{p}} }{\partial x^{2}} \end{aligned}$$
(44)

and

$$\begin{aligned} \frac{\varLambda _{\mathrm{e}} }{v_{\mathrm{e}} }\frac{\partial }{\partial t}\left( {\frac{\partial {{q}_{\mathrm{e}}^{\prime \prime }} }{\partial x}} \right) +\frac{\partial {{q}_{\mathrm{e}}^{\prime \prime }} }{\partial x}=-k_{\mathrm{e}} \frac{\partial ^{2}T_{\mathrm{e}} }{\partial x^{2}}. \end{aligned}$$
(45)

Now, substitute for \({\partial {{q}_{\mathrm{p}}^{\prime \prime }} }/{\partial x}\) and \({\partial {{q}_{\mathrm{e}}^{\prime \prime }} }/{\partial x}\) from Eqs. 40 and 41 into Eqs. 44 and 45, respectively, and simplify to obtain

$$\begin{aligned} \frac{\varLambda _{\mathrm{p}} }{v_{\mathrm{p}} }\frac{\partial }{\partial t}\left[ {C_{\mathrm{p}} \frac{\partial T_{\mathrm{p}} }{\partial t}+G\left( {T_{\mathrm{p}} -T_{\mathrm{e}} } \right) } \right] +C_{\mathrm{p}} \frac{\partial T_{\mathrm{p}} }{\partial t}=k_{\mathrm{p}} \frac{\partial ^{2}T_{\mathrm{p}} }{\partial x^{2}}-G\left( {T_{\mathrm{p}} -T_{\mathrm{e}} } \right) \end{aligned}$$
(46)

and

$$\begin{aligned} \frac{\varLambda _{\mathrm{e}} }{v_{\mathrm{e}} }\frac{\partial }{\partial t}\left[ {C_{\mathrm{e}} \frac{\partial T_{\mathrm{e}} }{\partial t}+G\left( {T_{\mathrm{e}} -T_{\mathrm{p}} } \right) } \right] +C_{\mathrm{e}} \frac{\partial T_{\mathrm{e}} }{\partial t}=k_{\mathrm{e}} \frac{\partial ^{2}T_{\mathrm{e}} }{\partial x^{2}}-G\left( {T_{\mathrm{e}} -T_{\mathrm{p}} } \right) . \end{aligned}$$
(47)

Noting that \(\tau _{\mathrm{p}} ={\varLambda _{\mathrm{p}} }/{v_{\mathrm{p}} }\) and \(\tau _{\mathrm{e}} ={\varLambda _{\mathrm{e}} }/{v_{\mathrm{e}} }\) are the relaxation times of the phonons and electrons, respectively, the above equations may be written as

$$\begin{aligned} \tau _{\mathrm{p}} \frac{\partial }{\partial t}\left[ {C_{\mathrm{p}} \frac{\partial T_{\mathrm{p}} }{\partial t}+G\left( {T_{\mathrm{p}} -T_{\mathrm{e}} } \right) } \right] +C_{\mathrm{p}} \frac{\partial T_{\mathrm{p}} }{\partial t}=k_{\mathrm{p}} \frac{\partial ^{2}T_{\mathrm{p}} }{\partial x^{2}}-G\left( {T_{\mathrm{p}} -T_{\mathrm{e}} } \right) \end{aligned}$$
(48)

and

$$\begin{aligned} \tau _{\mathrm{e}} \frac{\partial }{\partial t}\left[ {C_{\mathrm{e}} \frac{\partial T_{\mathrm{e}} }{\partial t}+G\left( {T_{\mathrm{e}} -T_p } \right) } \right] +C_{\mathrm{e}} \frac{\partial T_{\mathrm{e}} }{\partial t}=k_{\mathrm{e}} \frac{\partial ^{2}T_{\mathrm{e}} }{\partial x^{2}}-G\left( {T_{\mathrm{e}} -T_{\mathrm{p}} } \right) \end{aligned}$$
(49)

or,

$$\begin{aligned} \tau _{\mathrm{p}} C_{\mathrm{p}} \frac{\partial ^{2}T_{\mathrm{p}} }{\partial t^{2}}+\left( {C_{\mathrm{p}} +\tau _{\mathrm{p}} G} \right) \frac{\partial T_{\mathrm{p}} }{\partial t}-\tau _{\mathrm{p}} G\frac{\partial T_{\mathrm{e}} }{\partial t}=k_{\mathrm{p}} \frac{\partial ^{2}T_{\mathrm{p}} }{\partial x^{2}}-G\left( {T_{\mathrm{p}} -T_{\mathrm{e}} } \right) \end{aligned}$$
(50)

and

$$\begin{aligned} \tau _{\mathrm{e}} C_{\mathrm{e}} \frac{\partial ^{2}T_{\mathrm{e}} }{\partial t^{2}}+\left( {C_{\mathrm{e}} +\tau _{\mathrm{e}} G} \right) \frac{\partial T_{\mathrm{e}} }{\partial t}-\tau _{\mathrm{e}} G\frac{\partial T_{\mathrm{p}} }{\partial t}=k_{\mathrm{e}} \frac{\partial ^{2}T_{\mathrm{e}} }{\partial x^{2}}-G\left( {T_{\mathrm{e}} -T_{\mathrm{p}} } \right) . \end{aligned}$$
(51)

It should be noted that when the overall time scale of the heat transfer process is much larger than the relaxation time, then Eqs. 48 and 49 or Eqs. 50 and 51 can be further simplified to

$$\begin{aligned} C_{\mathrm{p}} \frac{\partial T_{\mathrm{p}} }{\partial t}=k_{\mathrm{p}} \frac{\partial ^{2}T_{\mathrm{p}} }{\partial x^{2}}-G\left( {T_{\mathrm{p}} -T_{\mathrm{e}} } \right) \end{aligned}$$
(52)

and

$$\begin{aligned} C_{\mathrm{e}} \frac{\partial T_{\mathrm{e}} }{\partial t}=k_{\mathrm{e}} \frac{\partial ^{2}T_{\mathrm{e}} }{\partial x^{2}}-G\left( {T_{\mathrm{e}} -T_{\mathrm{p}} } \right) . \end{aligned}$$
(53)

Equations 52 and 53 constitute the most familiar equations of the modified two-equation model [21].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Mansoor, S.B. & Yilbas, B.S. Thermal Characteristics of an Aluminum Thin Film due to Temperature Disturbance at Film Edges. Int J Thermophys 36, 157–182 (2015). https://doi.org/10.1007/s10765-014-1802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1802-2

Keywords

Navigation