Skip to main content

Advertisement

Log in

Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance (U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Mlakar, J. Štrancar, Build. Environ. 60, 185 (2013)

    Article  Google Scholar 

  2. K. Gregory, B. Moghtaderi, H. Sugo, A. Page, Energy Build. 40, 459 (2008)

    Article  Google Scholar 

  3. E. Kossecka, J. Kosny, Energy Build. 34, 321 (2002)

    Article  Google Scholar 

  4. Z. Pavlík, A. Trník, J. Ondruška, M. Keppert, M. Pavlíková, P. Volfová, V. Kaulich, R. Černý, Int. J. Thermophys. 34, 851 (2013)

    Article  ADS  Google Scholar 

  5. N. Aste, A. Angelotti, M. Buzetti, Energy Build. 41, 1181 (2009)

    Article  Google Scholar 

  6. M. Jiřičkova, Z. Pavlík, L. Fiala, R. Černý, Int. J. Thermophys. 27, 1214 (2006)

    Article  ADS  Google Scholar 

  7. Z. Pavlík, E. Vejmelková, L. Fiala, R. Černý, Int. J. Thermophys. 30, 1999 (2009)

    Article  ADS  Google Scholar 

  8. R. Černý, P. Rovnaníková, Transport Processes in Concrete, 1st edn. (Spon Press, London, 2002)

    Google Scholar 

  9. O. Jirsak, T. Gok, B. Ozipek, N. Pan, Text. Res. J. 68, 47 (1998)

    Article  Google Scholar 

  10. D.R. Salmon, R.P. Tye, J. Build. Phys. 34, 247 (2011)

    Article  Google Scholar 

  11. Z. Pavlík, L. Fiala, R. Černý, Int. J. Thermophys. 34, 909 (2013)

    Article  ADS  Google Scholar 

  12. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1988)

    MATH  Google Scholar 

  13. K.D. Antoniadis, M.J. Assael, C.A. Tsiglifisi, S.K. Mylona, Int. J. Thermophys. 33, 2274 (2012)

  14. M.P. Morales, M.C. Juárez, L.M. López-Ochoa, J. Doménech, Appl. Therm. Eng. 31, 2063 (2011)

    Article  Google Scholar 

  15. J.J. Diaz, P.J.G. Nieto, J.L.S. Sierra, C.B. Biempicam, Int. J. Heat Mass Transf. 51, 1530 (2008)

    Article  MATH  Google Scholar 

  16. J.J. Diaz, P.J.G. Nieto, C.B. Biempica, M.B.P. Gero, Appl. Therm. Eng. 27, 1445 (2007)

    Article  Google Scholar 

  17. A. Bouchair, Build. Environ. 43, 1603 (2008)

    Article  Google Scholar 

  18. L.P. Li, Z.G. Wu, Y.L. He, G. Lauriat, W.Q. Tao, Energy Build. 40, 1790 (2008)

    Article  Google Scholar 

  19. J. Sun, L. Fang, J. Han, Int. J. Heat Mass Transf. 53, 5509 (2010)

    Article  MATH  Google Scholar 

  20. C. Vasile, S. Lorente, B. Perrin, Energy Build. 28, 229 (1998)

    Article  Google Scholar 

  21. M.A. Antar, H. Baig, Appl. Therm. Eng. 29, 3716 (2009)

    Article  Google Scholar 

  22. M.M. Hazmy, Energy Build. 38, 515 (2006)

    Article  Google Scholar 

  23. M. Zukowski, G. Haese, Energy Build. 42, 1402 (2010)

    Article  Google Scholar 

  24. Z. Pavlík, R. Černý, Energy Build. 40, 673 (2008)

    Article  Google Scholar 

  25. Z. Pavlík, R. Černý, Appl. Therm. Eng. 29, 1941 (2009)

    Article  Google Scholar 

  26. Z. Pavlík, L. Fiala, E. Vejmelková, R. Černý, Int. J. Thermophys. 34, 894 (2013)

    Article  ADS  Google Scholar 

  27. L.M. Al-Hadhrami, A. Ahmad, Appl. Therm. Eng. 29, 1123 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation, under Project No. P105/12/G059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Černý.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlík, Z., Jerman, M., Fořt, J. et al. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions. Int J Thermophys 36, 557–568 (2015). https://doi.org/10.1007/s10765-014-1752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1752-8

Keywords

Navigation