Skip to main content
Log in

Fully Quantum Cross Second Virial Coefficients for the Three-Dimensional He–H\(_{2}\) Pair

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A recent high-accuracy three-dimensional potential is used to compute the cross second virial coefficient \(B_{12}(T)\) between helium and molecular hydrogen. These calculations fully account for both quantum effects (with the path-integral Monte Carlo method) and the flexibility of the hydrogen molecule. The effect of flexibility is relatively small (only slightly larger than the expanded uncertainty of our results), but the full quantum mechanical approach is essential to obtain correct results at cryogenic temperatures. Values are calculated from 8 K to 2000 K; the uncertainty of the potential is propagated into uncertainties of \(B_{12}\). Similar calculations are performed for He with the isotopologues D\(_{2}\), T\(_{2}\), HD, HT, and DT. Comparison is made with the experimental data for the He/H\(_{2}\) binary, and with the limited data available for He/D\(_{2}\) and He/HD. The calculated \(B_{12}(T)\)’s are generally consistent with the experimental results, but have lower uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Văsaru, Tritium Isotope Separation (CRC Press, Boca Raton, FL, 1993)

    Google Scholar 

  2. G. Grayson, A. Lopez, F. Chandler, L. Hastings, A. Hedayat, J. Brethour, NASA Report MSFC-668 (2007)

  3. M.J. Daigle, V.N. Smelyanskiy, J. Boschee, M. Foygel, J. Thermophys. Heat Transf. 27, 116 (2013)

    Article  Google Scholar 

  4. C.M. Gao, Y.L. He, Z.Q. Chen, Cryogenics 40, 475 (2000)

    Article  ADS  Google Scholar 

  5. Y.H. Huang, G.B. Chen, Z.H. Gan, K. Tang, R. Bao, in Proceedings of the Twentieth International Cryogenic Engineering Conference (ICEC20), ed. by L. Zhang, L. Lin, G. Chen (Elsevier, Amsterdam, 2005), p. 285

    Chapter  Google Scholar 

  6. W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 224303 (2012)

    Article  ADS  Google Scholar 

  7. K. Patkowski, W. Cencek, P. Jankowski, K. Szalewicz, J.B. Mehl, G. Garberoglio, A.H. Harvey, J. Chem. Phys. 129, 094304 (2008)

  8. G. Garberoglio, P. Jankowski, K. Szalewicz, A.H. Harvey, J. Chem. Phys. 137, 154308 (2012)

    Article  ADS  Google Scholar 

  9. R.J. Hinde, J. Chem. Phys. 128, 154308 (2008)

    Article  ADS  Google Scholar 

  10. G. Garberoglio, A.H. Harvey, Int. J. Thermophys. 34, 385 (2013)

    Article  ADS  Google Scholar 

  11. G. Garberoglio, P. Jankowski, K. Szalewicz, A.H. Harvey, J. Chem. Phys. 141, 044119 (2014)

    Article  ADS  Google Scholar 

  12. B.W. Bakr, D.G.A. Smith, K. Patkowski, J. Chem. Phys. 139, 144305 (2013)

    Article  ADS  Google Scholar 

  13. A.I. Boothroyd, P.G. Martin, M.R. Peterson, J. Chem. Phys. 119, 3187 (2003)

    Article  ADS  Google Scholar 

  14. R.P. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, emended by D.F. Styer (Dover, New York, 2010)

  15. G. Garberoglio, A.H. Harvey, J. Res. Natl. Inst. Stand. Technol. 114, 249 (2009)

    Article  Google Scholar 

  16. G. Garberoglio, M.R. Moldover, A.H. Harvey, J. Res. Natl. Inst. Stand. Technol. 116, 729 (2011)

    Article  Google Scholar 

  17. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  18. G. Garberoglio, A.H. Harvey, J. Chem. Phys. 134, 134106 (2011)

    Article  ADS  Google Scholar 

  19. H.F. Jordan, L.D. Fosdick, Phys. Rev. 171, 128 (1968)

    Article  ADS  Google Scholar 

  20. P. Levy, Memorial des Sciences Mathematiques (Gauthier Villars, Paris, 1954), Fas. 126

  21. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)

    MATH  Google Scholar 

  22. S.L. Mielke, B.C. Garrett, K.A. Peterson, J. Chem. Phys. 116, 4142 (2002)

    Article  ADS  Google Scholar 

  23. G. Garberoglio, J.K. Johnson, ACS Nano 4, 1703 (2010)

    Article  Google Scholar 

  24. G.P. Lepage, VEGAS: An adaptive multi-dimensional integration program, Technical report, Cornell preprint CLNS 80–447 (1980)

  25. J.W. Leachman, R.T. Jacobsen, S.G. Penoncello, E.W. Lemmon, J. Phys. Chem. Ref. Data 38, 721 (2009)

    Article  ADS  Google Scholar 

  26. I.A. Richardson, J.W. Leachman, E.W. Lemmon, J. Phys. Chem. Ref. Data 43, 013103 (2014)

    Article  Google Scholar 

  27. C.M. Knobler, J.J.M. Beenakker, H.F.P. Knaap, Physica 25, 909 (1959)

    Article  ADS  Google Scholar 

  28. H.F.P. Knaap, M. Knoester, F.H. Varekamp, J.J.M. Beenakker, Physica 26, 633 (1960)

    Article  ADS  Google Scholar 

  29. J. Brewer, Determination of Mixed Virial Coefficients, AFOSR Report 67–2795 (1967)

  30. J. Brewer, G.W. Vaughn, J. Chem. Phys. 50, 2960 (1969)

    Article  ADS  Google Scholar 

  31. J.M. Prausnitz, R.N. Lichtenthaler, E. Gomes de Azevedo, in Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. (Prentice Hall, Upper Saddle River, NJ, 1999), chap. 5

  32. W.B. Streett, R.E. Sonntag, G.J. Van Wylen, J. Chem. Phys. 40, 1390 (1964)

    Article  ADS  Google Scholar 

  33. M.J. Hiza, Fluid Phase Equilib. 6, 203 (1981)

    Article  Google Scholar 

  34. C.W. Gibby, C.C. Tanner, I. Masson, Proc. R. Soc. A 122, 283 (1929)

    Article  ADS  Google Scholar 

  35. J.J.M. Beenakker, F.H. Varekamp, A. Van Itterbeek, Physica 25, 9 (1959)

    Article  ADS  Google Scholar 

  36. F.H. Varekamp, J.J.M. Beenakker, Physica 25, 889 (1959)

    Article  ADS  Google Scholar 

  37. R. Berman, F.A.B. Chaves, D.M. Livesley, C.D. Swartz, J. Phys. C 12, L777 (1979)

    Article  ADS  Google Scholar 

  38. F.R.W. McCourt, D. Weir, G.B. Clark, M. Thachuk, Mol. Phys. 103, 17 (2005)

    Article  ADS  Google Scholar 

  39. J. Schaefer, W.E. Köhler, Physica A 129, 469 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank J.W. Leachman and R. Radebaugh for discussions on data needs for these mixtures. K.P. is supported by the U.S. National Science Foundation CAREER Award No. CHE-1351978 and by startup funding from Auburn University. G.G. acknowledges support by Istituto Nazionale di Fisica Nucleare through the “Supercalcolo” agreement with Fondazione Bruno Kessler. The path-integral calculations were performed on the KORE computer cluster at Fondazione Bruno Kessler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan H. Harvey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garberoglio, G., Patkowski, K. & Harvey, A.H. Fully Quantum Cross Second Virial Coefficients for the Three-Dimensional He–H\(_{2}\) Pair. Int J Thermophys 35, 1435–1449 (2014). https://doi.org/10.1007/s10765-014-1729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1729-7

Keywords

Navigation