Skip to main content
Log in

Microwave-Dimensional Measurements of Cylindrical Resonators for Primary Acoustic Thermometry

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Acoustic gas thermometry relies on the fundamental relationship between the speed of sound in a monatomic gas and its thermodynamic temperature. The speed of sound is calculated from the resonance frequencies of a cavity whose dimensions or thermal expansivity must be measured with high accuracy. For quasi-spherical cavities, the use of microwave resonances is a successful and proven dimensional measurement technique. The simplicity and economy of cylindrical resonators makes them an attractive alternative to quasi-spherical resonators, particularly for high-temperature thermometry. This article summarizes the basic theory of cylindrical microwave resonators, and describes methods for obtaining cavity dimensions from the mode frequencies. The perturbing effects of cavity shape deformations, the wall to end-plate junction, coupling probes and non-conducting surface layers are discussed. The results of an experiment with a simple aluminum cavity are presented, which demonstrate the superior performance of the TE0\(pq\) modes over the more commonly used TM0\(pq\) modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, L. Wolber, Int. J. Thermophys. 32, 12 (2011)

    Article  ADS  Google Scholar 

  2. M.R. Moldover, R.M. Gavioso, J.B. Mehl, L. Pitre, M. de Podesta, J.T. Zhang, Metrologia 51, R1 (2014)

  3. M.B. Ewing, J.B. Mehl, M.R. Moldover, J.P.M. Trusler, Metrologia 25, 211 (1988)

    Article  ADS  Google Scholar 

  4. R. Underwood, D. Flack, P. Morantz, G. Sutton, P. Shore, M. de Podesta, Metrologia 48, 1 (2011)

    Article  ADS  Google Scholar 

  5. D.C. Ripple, G.F. Strouse, M.R. Moldover, Int. J. Thermophys. 28, 1789 (2007)

    Article  ADS  Google Scholar 

  6. L. Pitre, M.R. Moldover, W.L. Tew, Metrologia 43, 142 (2006)

    Article  ADS  Google Scholar 

  7. J.T. Zhang, H. Lin, X.J. Feng, J.P. Sun, K.A. Gillis, M.R. Moldover, Y.Y. Duan, Int. J. Thermophys. 32, 1297 (2011)

    Article  ADS  Google Scholar 

  8. X.J. Feng, K.A. Gillis, M.R. Moldover, J.B. Mehl, Metrologia 50, 219 (2013)

    Article  ADS  Google Scholar 

  9. R.F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961)

    Google Scholar 

  10. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975)

    MATH  Google Scholar 

  11. J.C. Slater, Rev. Mod. Phys. 18, 441 (1946)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. R.A. Waldron, Theory of Guided Electromagnetic Waves (Van Nostrand, London, 1970)

    Google Scholar 

  13. J.B. Mehl, M.R. Moldover, Phys. Rev. A 34, 3341 (1986)

    Article  ADS  Google Scholar 

  14. H.E. Bussey, IRE Trans. Instrum. I-9, 171 (1960)

  15. A. Agliolo Gallitto, G. Bonsignore, M. Li Vigni, G. Giunchi, Y.A. Nefyodov, Phys. C: Supercond. 468, 66 (2008)

    Article  ADS  Google Scholar 

  16. M.B. Ewing, D.D. Royal, J. Chem. Thermodyn. 34, 1073 (2002)

    Article  Google Scholar 

  17. R.J. Underwood, J.B. Mehl, L. Pitre, G. Edwards, G. Sutton, M. de Podesta, Meas. Sci. Technol. 21 (2010)

  18. R.J. Underwood, J.B. Mehl, private communication

  19. L. Pitre, F. Sparasci, D. Truong, A. Guillou, L. Risegari, M.E. Himbert, Int. J. Thermophys. 32, 1825 (2011)

    Article  ADS  Google Scholar 

  20. J.C. Gallop, W. Radcliffe, J. Phys. E: Sci. Instrum. 19, 413 (1986)

    Article  ADS  Google Scholar 

  21. Aluminium alloy 6082–T6 datasheet, http://www.aalco.co.uk. Accessed 11 July 2014

  22. P.D. Desai, H.M. James, C.Y. Ho, J. Phys. Chem. Ref. Data 13, 1131 (1984)

    Article  ADS  Google Scholar 

  23. R. Underwood, S. Davidson, M. Perkin, P. Morantz, G. Sutton, M. de Podesta, Metrologia 49, 245 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the EMRP. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Crown copyright 2013. Reproduced by permission of the Controller of HMSO and the Queen’s printer for Scotland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Underwood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Underwood, R.J., Edwards, G.J. Microwave-Dimensional Measurements of Cylindrical Resonators for Primary Acoustic Thermometry. Int J Thermophys 35, 971–984 (2014). https://doi.org/10.1007/s10765-014-1726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1726-x

Keywords

Navigation