Skip to main content
Log in

Super-Compact 28/38 GHz 4-Port MIMO Antenna Using Metamaterial-Inspired EBG Structure with SAR Analysis for 5G Cellular Devices

  • Research
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Maintaining the compact form of 5G smartphones while accommodating millimeter-wave (mm-wave) bands is a significant challenge due to the substantial frequency difference. To address this issue, we’ve introduced an super-compact 4-port dual-band multiple-input, multiple-output (MIMO) antenna that utilizes a metamaterial-inspired electromagnetic bandgap (EBG) structure. This design minimizes mutual coupling (MC) and handles a wide frequency range effectively. The 4-port MIMO antenna is constructed on a Rogers TMM4 substrate, with overall dimensions of 17.76 × 17.76 mm². It incorporates four planar patch antennas positioned at the corners, arranged perpendicularly to each other. Each antenna element is designed for dual-band operation at 28/38 GHz, featuring a rectangular patch with four rectangular slots and a full ground plane. The gap between these patches measures 0.5 λo, and an EBG is included to minimize MC among the MIMO antenna elements efficiently and cost-effectively. Both simulation and measurement results show a substantial reduction in mutual coupling between the array elements, ranging from −25 to −90 dB. Consequently, this enhances the envelope correlation coefficient (ECC) and improves the total active reflection coefficient (TARC), mean effective gain (MEG), and diversity gain (DG). An in-depth time-domain analysis is proposed to confirm the radiation efficiency of the proposed MIMO antenna design. Furthermore, specific absorption rate (SAR) analysis affirms the suitability of this MIMO antenna for 5G cellular devices operating within the target frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Nizar S., Anouar B., Islem B. H., Lassaad L., and Ali G., Millimeter-Wave Dual-Band MIMO Antennas for 5G Wireless Applications", Journal of Infrared, Millimeter, and Terahertz Waves, vol. 44, pp. 297–312, 2023. https://doi.org/10.1007/s10762-023-00914-5

    Article  Google Scholar 

  2. Ayman R. S. , Wael A. E. A. , and Ahmed A. I., Minimally Coupled Two-Element MIMO Antenna with Dual Band (28/38 GHz) for 5G Wireless Communications", Journal of Infrared, Millimeter, and Terahertz Waves vol. 43, pp. 335-348 2022. https://doi.org/10.1007/s10762-022-00857-3

    Article  Google Scholar 

  3. T. Saeidi, A. J. A. Al-Gburi, and S. Karamzadeh, “A Miniaturized Full-Ground Dual-Band MIMO Spiral Button Wearable Antenna for 5G and Sub-6 GHz Communications,” Sensors, vol. 23, no. 4, p. 1997, 2023, doi: https://doi.org/10.3390/s23041997.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Ayyaz Ali, Mehr E Munir, Moustafa M. Nasralla, Maged A. Esmail, Ahmed Jamal Abdullah Al-Gburi, Farooq Ahmed Bhatti, Design process of a compact Tri-Band MIMO antenna with wideband characteristics for sub-6 GHz, Ku-band, and Millimeter-Wave applications, Ain Shams Engineering Journal, 2023, 102579.

  5. Parchin N. O., Basherlou H. J., Al-Yasi Y.I. A., Abdulkhaleq A.M., Patwary M. and Abd-Alhameed R.A., A New CPW-Fed Diversity Antenna for MIMO 5G ", Electronics, vol. 9, pp. 261-276, 2020. doi:https://doi.org/10.3390/electronics9020261

    Article  Google Scholar 

  6. Ibrahim A.A., Ali W.A.E., Alathbah M., and Sabek A.R., Four-Port 38 GHz MIMO Antenna with High Gain and Isolation for 5GWireless Networks", Sensors, vol 23, pp.3557-3576, 2023. https://doi.org/10.3390/s23073557

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. R. K. Mistri et al., “Quad Element MIMO Antenna for C, X, Ku, and Ka-Band Applications,” Sensors, vol. 23, no. 20, p. 8563, 2023, doi: https://doi.org/10.3390/s23208563.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. C. R. Jetti et al., “Design and Analysis of Modified U-Shaped Four Element MIMO Antenna for Dual-Band 5G Millimeter Wave Applications,” Micromachines, vol. 14, no. 8, p. 1545, 2023, doi: https://doi.org/10.3390/mi14081545.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ali W., Sudipta D., Hicham M., and Soufian L., "Planar dual-band 27/39 GHz millimeter- wave MIMO antenna for 5G applications", Microsystem Technologies, vol. 27, pp. 283-292, 2021.

    Article  Google Scholar 

  10. Zahra H., Wahaj A. A., Wael A. E. A., Niamat H., Syed M. A., and Subhas M., A 28 GHz Broadband Helical Inspired End-Fire Antenna and Its MIMO Configuration for 5G Pattern Diversity Applications", Electronics, 10, no. 4, 405-419, 2021.

    Article  Google Scholar 

  11. Hussain N., Wahaj A. A., Wael A., Syeda I. Na, Abir Z., and Tuan T. L., "Compact wideband patch antenna and its MIMO configuration for 28 GHz applications." AEU International Journal of Electronics and Communications, vol. 132, pp. 153612, 2021.

    Article  Google Scholar 

  12. Ibrahim A. A., and Wael A. A., "High gain, wideband and low mutual coupling AMC-based millimeter wave MIMO antenna for 5G NR networks", AEU-International Journal of Electronics and Communications, vol. 142, pp. 153990, 2021.

    Google Scholar 

  13. Jilani S. F., and Akram A., "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks." IET Microwaves, Antennas & Propagation, 12, no. 5, pp. 672–677, 2018.

    Article  Google Scholar 

  14. A. Ali et al., “A Compact MIMO Multiband Antenna for 5G/WLAN/WIFI-6 Devices,” Micromachines, vol. 14, no. 6, p. 1153, 2023, doi: https://doi.org/10.3390/mi14061153.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hala M. M., Mohamed I. A. and Abdelhamed A. S., A Novel Dual-band 28/38 GHz Slotted Microstrip MIMO Antenna for 5G Mobile Applications", Journal of Electromagnetic Waves and Applications, vol. 33, pp. 1581–1590, 2019.

    ADS  Google Scholar 

  16. Elabd R.H., and Abdullah H.H., A High Isolation UWB MIMO Vivaldi Antenna Based on CSRR-NL for Contemporary 5G Millimeter-Wave Applications", J Infrared Milli Terahz Waves, vol. 43, pp. 920–941, 2022. https://doi.org/10.1007/s10762-022-00894-y

    Article  Google Scholar 

  17. Elabd R.H., Abdullah H.H. and Abdelazim M., Compact Highly Directive MIMO Vivaldi Antenna for 5G Millimeter-Wave Base Station", J Infrared Milli Terahz Waves, vol. 42, pp. 173–194, 2021. https://doi.org/10.1007/s10762-020-00765-4

    Article  Google Scholar 

  18. Yang B., Zhiqiang Y., JiLan R. Z., Jianyi Z., and Wei H., "Digital beam forming- based massive MIMO transceiver for 5G millimeter-wave communications", IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 7, pp. 3403–3418, 2018.

    Article  ADS  Google Scholar 

  19. Ohyun J., Jung-Ju K., Jungmin Y., Dooseok C., and Wonbin H., "Exploitation of dual polarization diversity for 5G millimeter-wave MIMO beam forming systems", IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6646-6655, 2017.

    Article  Google Scholar 

  20. Mneesy T. S., Radwa K. H., Amira I. Z., and Wael A. E. A., "A Novel High Gain Monopole Antenna Array for 60 GHz Millimeter-Wave Communications", Applied Sciences, vol. 10, no. 13, pp. 4546, 2020.

    Article  CAS  Google Scholar 

  21. Marzouk H. M., Mohamed I. A., and Abdel Hamied S., "Novel dualband 28/38 GHz MIMO antennas for 5G mobile applications", Progress in Electromagnetics Research, vol. 93, 103–117, 2019.

    Article  Google Scholar 

  22. Aliakbari H., Abdolali A., Alessandra C., Diego M., Rashid M., and Pedram M., "ANN-based design of a versatile millimetre-wave slotted patch multi-antenna configuration for 5G scenarios", IET Microwaves, Antennas & Propagation, Vol. 11, no. 9, pp. 1288–1295, 2017.

    Article  Google Scholar 

  23. Hasan M. N., Bashir S. and Chu S., Dual band omnidirectional millimeter wave antenna for 5G communications", Journal of Electromagnetic Waves and Applications, vol. 33, 12, 1581-1590, 2019.

    Article  ADS  Google Scholar 

  24. Ikram M., Yifan W., Mohammad S. Sh. , and Amin A., "Dual band circular MIMO antenna system for 5G wireless devices", In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 247–248. 2018.

    Google Scholar 

  25. Omar A., Mousa H., I. J. Rajmohan, and Kh. Ba., "Dual-band MIMO coplanar waveguide-fed-slot antenna for 5G communications", Heliyon, vol. 7, no. 4, pp. 6779, 2021.

    Article  Google Scholar 

  26. Aghoutane B., Sudipta D., Mohammed E. Gh., Madhav B. T. P., and Hanan E. F., "A Novel Dual Band High Gain 4-port Millimeter Wave MIMO Antenna Array for 28/37 GHz 5G Applications", AEU-International Journal of Electronics and Communications, vol. 145, no. 4, p. 154071, 2022.

    Google Scholar 

  27. Rafique U., Shobit A., Nasir N., Hisham Kh., and Khalil U., "Inset-fed Planar Antenna Array for Dual-band 5G MIMO Applications", Progress In Electromagnetics Research C, 112, ,pp. 83-98, 2021.

    Article  Google Scholar 

  28. Farahat A. E., and Khalid F. A. H., "28/38 GHz dual-band Yagi-Uda antenna with corrugated radiator and enhanced reflectors for 5G MIMO antenna systems", Progress In Electromagnetics Research C, 101, 159–172, 2020.

    Article  Google Scholar 

  29. Liu P., Xiao W. Z., Yan Z., Xiang W., Chunfeng Y., and Zhi H. J., Patch antenna loaded with paired shorting pins and H-Shaped slot for 28/38 GHz dual-band MIMO applications IEEE Access, 8, pp. 23705–23712, 2020.

    Article  Google Scholar 

  30. Farahat A. E., and Khlaid F. H., "Dual-band (28/38 GHz) MIMO antenna system for 5G mobile communications with efficient DoA estimation algorithm in noisy channels", The Applied Computational Electromagnetics Society Journal (ACES), 36, 3, 282–294, 2021.

    Article  Google Scholar 

  31. Marzouk H. M., Ahmed M. I., and Shaalan A. A., A Novel Dual-Band 28/38 GHz AFSL MIMO Antenna for 5G Smartphone Applications", J. Phys. Conf. Ser., vol. 1447, no. 1, 2020

  32. Gómez L., and Ibrahim A.S., Design, Analysis and Simulation of Microstrip Antenna Arrays with Flexible Substrate in Different Frequency, for Use in UAV-Assisted Marine Communications", J. Mar. Sci. Eng., 11, pp. 730, 2023 https://doi.org/10.3390/jmse11040730

    Article  Google Scholar 

  33. Roy S. and Chakraborty U., Mutual coupling reduction in a multi-band MIMO antenna using meta-inspired decoupling network”, Wireless Pers. Commun., vol. 114, no. 4, pp. 3231-3246, 2020.

    Article  Google Scholar 

  34. Anitha R., Vinesh P. V., Prakash K. C., Mohanan P., and Vasudevan K., A compact quad element slotted ground wideband antenna for MIMO applications”, IEEE Trans. Antennas Propag., vol. 64, no. 10, pp. 4550-4553, 2016.

    Article  ADS  MathSciNet  Google Scholar 

  35. Kulkarni J., Desai A., and Sim C.-Y.-D., Wideband four-port MIMO antenna array with high isolation for future wireless systems AEU-Int. J. Electron. Commun., vol. 128, 153507, 2021. doi: https://doi.org/10.1016/j.aeue.2020.153507.

    Article  Google Scholar 

  36. Zou X.-J., Wang G.-M., Wang Y.-W., and Zong B.-F., Mutual coupling reduction of quasi-yagi antenna array with hybrid wideband decoupling structure AEU-Int. J. Electron. Commun., 129, 153553, 2021.

    Article  Google Scholar 

  37. Birwal A., Singh S., Kanaujia B. K., and Kumar S., MIMO/diversity antenna with neutralization line for WLAN applications”, MAPAN, vol. 36, pp. 763-772, 2021.

    Article  Google Scholar 

  38. Zhang S. and Pedersen G. F., Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line”, IEEE Antennas Wireless Propag. Lett., vol. 15, 166, 2016.

    Article  ADS  Google Scholar 

  39. Khan M. S., Capobianco A.-D., Shaque M. F., Ijaz B., Naqvi A., and Braaten B. D., Isolation enhancement of a wideband MIMO antenna using parasitic elements”, Microw. Opt. Technol. Lett., vol. 57, no. 7, pp. 1677-1682, 2015.

    Article  Google Scholar 

  40. Yang M. and Zhou J., A compact pattern diversity MIMO antenna with enhanced bandwidth and high-isolation characteristics for WLAN/5G/WiFi applications”, Microw. Opt. Technol. Lett., vol. 62, no. 6, pp. 2353–2364, 2020.

    Article  Google Scholar 

  41. Ding K., Gao C., Qu D., and Yin Q., Compact broadband MIMO antenna with parasitic strip”, IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2349-2353, 2017.

    Article  ADS  Google Scholar 

  42. Sultan K. S. and Abdullah H. H., Planar UWB MIMO-diversity antenna with dual notch characteristics”, Prog. Electromagn. Res. C, vol. 93, pp. 119-129, 2019.

    Article  Google Scholar 

  43. Ali, W.A., Ibrahim, A.A., and Ahmed, A.E., Dual-Band Millimeter Wave 2 x 2 MIMO Slot Antenna with Low Mutual Coupling for 5G Networks". Wirel. Pers. Commun, vol. 129, pp. 2959–2976, 2023.

    Article  Google Scholar 

  44. Sghaier, N., Belkadi, A., Hassine, I.B., Latrach, L., and Gharsallah, A. Millimeter-Wave Dual-Band MIMO Antennas for 5G Wireless Applications. J. Infrared Millim. Terahertz Waves, vol. 44, pp. 297–312, 2023.

    Article  Google Scholar 

  45. Hussain, M., Awan, W.A., Ali, E.M., Alzaidi, M.S., Alsharef, M., Elkamchouchi, D.H., Alzahrani, A., and Fathy Abo Sree, M, Isolation Improvement of Parasitic Element-Loaded Dual-Band MIMO Antenna for Mm-Wave Applications", Micromachines, vol. 13, pp. 1918, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bilal, M., Naqvi, S.I., Hussain, N., Amin, Y., and Kim, N., High-Isolation MIMO antenna for 5G millimeter-wave communication systems", Electronics, vol. 11, pp. 962, 2022.

    Article  Google Scholar 

  47. Khalid, M., Iffat Naqvi, S., Hussain, N., Rahman, M., Mirjavadi, S.S., Khan, M.J., and Amin, Y., 4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications", Electronics, vol. 9, pp. 71, 2020.

    Article  Google Scholar 

  48. Rania Hamdy Elabd , and Ahmed Jamal Abdullah Al-Gburi, SAR assessment of miniaturized wideband MIMO antenna structure for millimeter wave 5G smartphones", Microelectronic Engineering, vol. 282, 112098-112115, 2023. https://doi.org/10.1016/j.mee.2023.112098

    Article  CAS  Google Scholar 

  49. Amgad Iqbal, and Amal Bouazizi, “Dielectric resonator antenna with top loaded parasitic strip elements for dual-band operation,” Microw. Opt. Technol. Lett., vol. 61, no. 9, 2134–2140, 2019.

    Article  Google Scholar 

  50. Wu W., Yuan B., and Wu A., A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG structures”, Int. J. Antennas Propag., vol. 2018, 8490740, 2018.

    Article  Google Scholar 

  51. Ding K., Gao C., Qu D., and Yin Q., Compact broadband MIMO antenna with parasitic strip", IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2349-2353, 2017.

    Article  ADS  Google Scholar 

  52. Pritam B. Nikam , Jayendra Kumar , V. Sivanagaraju , and Achinta Baidya, Dual-band reconfigurable EBG loaded circular patch MIMO antenna using defected ground structure (DGS) and PIN diode integrated branch-lines (BLs)", Measurement, vol. 195, pp. 111127-111137, 2022.

    Article  Google Scholar 

  53. Lak A., Adelpour Z., Oraizi H., and Parhizgar N., Design and SAR assessment of three compact 5G antenna arrays", Scientific Reports, vol. 11, pp. 21265, 2021.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  54. Umar Farooq, G.M. Rather, A miniaturised Ka/V dual band millimeter wave antenna for 5G body centric network applications ", Alexandria Engineering Journal, vol. 61, Issue 9, pp. 8089-8096, 2022. https://doi.org/10.1016/j.aej.2022.01.044.

    Article  Google Scholar 

  55. Zada, M., Ali Shah, I. & Yoo, H., Integration of sub-6-GHz and mm-wave bands with a large frequency ratio for future 5G MIMO application IEEE Access, vol. 9, pp. 11241–11251, 2021.

    Article  Google Scholar 

  56. OjaroudiParchin, N. et al., MM-wave phased array Quasi-Yagi antenna for the upcoming 5G cellular communications", Appl. Sci. vol. 9, no. 5, 2019.

  57. Khan, J., Sehrai, D. A. & Ali, U., Design of dual band 5G antenna array with SAR analysis for future mobile handsets", J. Electr. Eng. Technol., vol. 14, no. 2, pp. 809–816, 2018.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the New Damietta Higher Institute of Engineering and Technology (NDETI), Damietta, Egypt, as well as the University Teknikal Malaysia Melaka (UTeM) and the Ministry of Higher Education (MOHE) of Malaysia for their support in this project.

Funding

The authors express their gratitude to the New Damietta Higher Institute of Engineering and Technology (NDETI), Damietta, Egypt, as well as the University Teknikal Malaysia Melaka (UTeM) and the Ministry of Higher Education (MOHE) of Malaysia for their support in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Jamal Abdullah Al-Gburi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elabd, R.H., Al-Gburi, A.J.A. Super-Compact 28/38 GHz 4-Port MIMO Antenna Using Metamaterial-Inspired EBG Structure with SAR Analysis for 5G Cellular Devices. J Infrared Milli Terahz Waves 45, 35–65 (2024). https://doi.org/10.1007/s10762-023-00959-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-023-00959-6

Keywords

Navigation