Skip to main content
Log in

In Situ Thickness Measurements of a Silicon Wafer with a Deposited Thin Layer Using Multi-Reflected Terahertz Electromagnetic Waves Through Quartz Chamber Window

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Accurate and non-destructive measurement of thin layer thickness is critical for ensuring the quality and performance of microelectronic devices. In this study, terahertz time-domain spectroscopy (THz-TDS) was used to measure the combined thickness of a silicon wafer and its deposited thin layer without requiring prior knowledge of the individual material properties. The multi-reflected THz signals from the Si wafer were utilized to accurately calculate the actual thickness and optical properties with a 0.19% error. In the reflection measurement, the variation of optical properties was measured according to the thickness of the deposition through the quartz chamber window. To overcome the intrinsic overlapping of the pulse signal through the quartz chamber window, the detection time of unwanted signals was calculated theoretically, and the inspection conditions such as quartz window thickness and distances between the wafer and window were optimized for accurate measurement with THz-TDS. Based on these results, the accuracy of thickness prediction in the thin layer was confirmed with 4.2% of an error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable

References

  1. M. Neuber, O. Storbeck, M. Langner, K. Stahrenberg, T. Mikolajick, J. Vac. Sci. Technol. B 37, 032202 (2019) https://doi.org/10.1116/1.5080527

    Article  Google Scholar 

  2. Y. Cao, J. Zhou, Y. Ren, W. Xu, W. Liu, X. Cai, B. Zhao, Sol. Energy 198, 469 (2020). https://doi.org/10.1016/j.solener.2020.01.054

    Article  Google Scholar 

  3. D. Blaschke, F. Munnik, J. Grenzer, L. Rebohle, H. Schmidt, P. Zahn, S. Gemming, Appl. Surf. Sci. 506, 144188 (2020) https://doi.org/10.1016/j.apsusc.2019.144188

    Article  Google Scholar 

  4. SM. Polvino, CE. Murray, Ö. Kalenci, I. Noyan, B. Lai, Z. Cai, Applied Physics Letters 92, 224105 (2008) https://doi.org/10.1063/1.2942380

    Article  Google Scholar 

  5. J. Zhang, E. Fretwurst, R. Klanner, H. Perrey, I. Pintilie, T. Poehlsen, J. Schwandt, Journal of Instrumentation 6, C11013 (2011) https://doi.org/10.1088/1748-0221/6/11/C11013

    Article  Google Scholar 

  6. DS. Sitnikov, IV. Ilina, VA. Revkova, SA. Rodionov, SA. Gurova, RO. Shatalova, AV. Kovalev, AV. Ovchinnikov, OV. Chefonov, MA. Konoplyannikov, Biomedical optics express 12, 7122 (2021) https://doi.org/10.1364/BOE.440460

    Article  Google Scholar 

  7. GH. Oh, JH. Jeong, SH. Park, HS. Kim, Composites Science and Technology, 157, 67 (2018) https://doi.org/10.1016/j.compscitech.2018.01.030

    Article  Google Scholar 

  8. J. Dong, P. Pomarède, L. Chehami, A. Locquet, F. Meraghni, NF. Declercq, D. Citrin, NDT & E International, 99,72 (2018) https://doi.org/10.1016/j.ndteint.2018.07.001

    Article  Google Scholar 

  9. L. Duvillaret, F. Garet, J-L. Coutaz, Applied optics 38, 409 (1999) https://doi.org/10.1364/AO.38.000409

    Article  Google Scholar 

  10. TD. Dorney, RG. Baraniuk, DM. Mittleman. JOSA A 18, 1562 (2001) https://doi.org/10.1364/JOSAA.18.001562

    Article  Google Scholar 

  11. M. Scheller, C. Jansen, M. Koch, Optics Communications 282, 1304 (2009). https://doi.org/10.1016/j.optcom.2008.12.061

    Article  Google Scholar 

  12. B. Kolner, R. Buckles, P. Conklin, R. Scott Kolner, IEEE Journal of Selected Topics in Quantum Electronics 14, 505 (2008) https://doi.org/10.1109/JSTQE.2007.913395

    Article  Google Scholar 

  13. N. Brown, S. Grauer, A. Deibel, M. Walker, M. Adam. A. Steinberg, Optics Express 29, 4887 (2021) https://doi.org/10.1364/OE.417396

  14. X. Xin, H. Altan, A. Saint, D. Matten, R. Alfano, Journal of applied physics 100, 094905 (2006) https://doi.org/10.1063/1.2357412

    Article  Google Scholar 

  15. M. Naftaly, R. Dudley, Optics letters 34, 1213 (2009) https://doi.org/10.1364/OL.34.001213

    Article  Google Scholar 

  16. DW. Park, GH. Oh, DJ. Kim, HS. Kim, NDT & E International 105, 11 (2019) https://doi.org/10.1016/j.ndteint.2019.04.012

    Article  Google Scholar 

  17. J. Choi, WS. Kwon, K-S. Kim, S. Kim, Journal of Nondestructive Evaluation 34, 1 (2015) https://doi.org/10.1007/s10921-014-0269-1

    Article  Google Scholar 

  18. X. Zou, J. Luo, D. Lee, C. Cheng, D. Springer, SK. Nair, SA. Cheong, HJ. Fan, E. Chia, Journal of Physics D: Applied Physics 45, 465101 (2012) https://doi:https://doi.org/10.1088/0022-3727/45/46/465101

    Article  Google Scholar 

  19. H. Mei, L. Li, F. Yin, W. Hu, J. Liu, L. Wang, IEEE Access 8, 226887 (2019) https://doi.org/10.1109/ACCESS.2019.2941798

    Article  Google Scholar 

  20. H. Hoshina, Y. Sasaki, A. Hayashi, C. Otani, K. Kawase, Applied spectroscopy 63, 81 (2009) https://doi.org/10.1063/1.4955407

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical discussion from the Lam Research Corporation.

Funding

This research was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean Government (MEST)(2021M2E6A1084690) and a grant from the Human Resources Development program (no. 20204010600090) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Trade, Industry, and Energy of the Korean Government.

Author information

Authors and Affiliations

Authors

Contributions

Dong-Woon Park: conceptualization, methodology, writing — original draft; Gyung-Hwan Oh: investigation and formal analysis; Heon-Su Kim: software and formal analysis; Jindoo Choi: writing — review and editing and resources; Fabio Righetti: resources; Jin-Sung Kang: writing — review and editing and resources; and Hak-Sung Kim: supervision, writing — review and editing.

Corresponding author

Correspondence to Hak-Sung Kim.

Ethics declarations

Ethical Approval

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, DW., Oh, GH., Kim, HS. et al. In Situ Thickness Measurements of a Silicon Wafer with a Deposited Thin Layer Using Multi-Reflected Terahertz Electromagnetic Waves Through Quartz Chamber Window. J Infrared Milli Terahz Waves 44, 458–472 (2023). https://doi.org/10.1007/s10762-023-00919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-023-00919-0

Keywords

Navigation