Skip to main content
Log in

Terahertz Spectroscopy and Density Functional Theory Investigation of the Dipeptide L-Carnosine

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

Terahertz spectroscopy and density functional theory (DFT) calculations have been used to study the dipeptide l-carnosine. In this paper, we expand the range of materials described with THz measurements and DFT calculations from amino acids to dipeptides. Three clear resonances were detected in the experimental spectrum at 1.5 THz, 1.9 THz, and 2.3 THz. Additionally, we performed periodic boundary condition DFT calculations. The computational spectrum accurately reproduces the experimental one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. E.C.B. Smith, The buffering of muscle in rigor; protein, phosphate and carnosine, J. Physiol. 92(3), 336 (2019). https://doi.org/10.1113/jphysiol.1938.sp003605.

  2. W. Derave, M.S. Özdemir, R.C. Harris, A. Pottier, H. Reyngoudt, K. Koppo, J.A. Wise, E. Achten, b-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters, J. Appl. Physiol. 103(5), 1736 (2019). 10.1152/japplphysiol.00397.2007.

  3. A.R. Hipkiss, Glycation, ageing and carnosine: Are carnivorous diets beneficial?, Mech. Ageing Dev. 126(10), 1034 (2005). http://www.sciencedirect.com/science/article/pii/S0047637405001193.

  4. P.J. Quinn, A.A. Boldyrev, V.E. Formazuyk, Carnosine: Its properties, functions and potential therapeutic applications, Molecular Aspects of Medicine 13(5), 379 (1992). http://www.sciencedirect.com/science/article/pii/009829979290006L.

  5. W. Withayachumnankul, D. Abbott, Metamaterials in the terahertz regime, IEEE Photon. J. 1(2), 99 (2009).

  6. M.A. Hoeh, J. Neu, K. Schmitt, M. Rahm, Optical tuning of ultra-thin, silicon-based flexible metamaterial membranes in the terahertz regime, Opt. Mater. Express 5(2), 408 (2015). http://www.osapublishing.org/ome/abstract.cfm?URI=ome-5-2-408.

  7. G. Acuna, S.F. Heucke, F. Kuchler, H.T. Chen, A.J. Taylor, R. Kersting, Surface plasmons in terahertz metamaterials, Opt. Express 16, 23 (2008).

  8. J. Neu, D.J. Aschaffenburg, M.R.C. Williams, C.A. Schmuttenmaer, Optimization of terahertz metamaterials for near-field sensing of chiral substances, IEEE Trans. THz Sci. Technol. 7(6), 755 (2017). https://doi.org/10.1109/TTHZ.2017.2746259.

  9. J. Neu, R. Beigang, M. Rahm, Metamaterial-based gradient index beam steerers for terahertz radiation, Appl. Phys. Lett. 103(4), 041109 (2013). https://doi.org/10.1063/1.4816345.

  10. H.T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices, Nature 444(7119), 597 (2006). https://doi.org/10.1038/nature05343.

  11. J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, M. Rahm, Metamaterial-based gradient index lens with strong focusing in the THz frequency range, Opt. Express 18(26), 27748 (2010). https://doi.org/10.1364/OE.18.027748. http://www.opticsexpress.org/abstract.cfm?URI=oe-18-26-27748.

  12. M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, X. Xu, Detection and identification of illicit drugs using terahertz imaging, J. Appl. Phys. 100(10), 103104 (2006). https://doi.org/10.1063/1.2388041.

  13. A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, J.E. Cunningham, Terahertz spectroscopy of explosives and drugs, Mater. Today 11(3), 18 (2008). https://doi.org/10.1016/S1369-7021(08)70016-6. http://www.sciencedirect.com/science/article/pii/S1369702108700166.

  14. C. Zhang, K. Mu, X. Jiang, Y. Jiao, L. Zhang, Q. Zhou, Y. Zhang, J. Shen, G. Zhao, X.C. Zhang, in: Proc. of SPIE, vol. 6840 (2007), vol. 6840, p. 68400S.

  15. H. Hoshina, Y. Sasaki, A. Hayashi, C. Otani, K. Kawase, Noninvasive Mail Inspection System with Terahertz Radiation, Appl. Spectrosc. 63(1), 81 (2009). http://as.osa.org/abstract.cfm?URI=as-63-1-81.

  16. T.M. Korter, R. Balu, M.B. Campbell, M.C. Beard, S.K. Gregurick, E.J. Heilweil, Terahertz spectroscopy of solid serine and cysteine, Chem. Phys. Lett. 418(1), 65 (2006). http://www.sciencedirect.com/science/article/pii/S0009261405015988.

  17. D.V. Nickel, M.T. Ruggiero, T.M. Korter, D.M. Mittleman, Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor, Phys. Chem. Chem. Phys. 17(10), 6734 (2015). https://doi.org/10.1039/C4CP04947K.

  18. M.T. Ruggiero, J. Axel Zeitler, T.M. Korter, Concomitant polymorphism and the martensitic-like transformation of an organic crystal, Phys. Chem. Chem. Phys. 19, 28502 (2017). https://doi.org/10.1039/C7CP04666A.

  19. M.R.C. Williams, A.B. True, A.F. Izmaylov, T.A. French, K. Schroeck, C.A. Schmuttenmaer, Terahertz spectroscopy of enantiopure and racemic polycrystalline valine, Phys. Chem. Chem. Phys. 13(24), 11719 (2011). https://doi.org/10.1039/C1CP20594C.

  20. M. Walther, B.M. Fischer, P. Uhd Jepsen, Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared, Chemical Physics 288(2), 261 (2003). http://www.sciencedirect.com/science/article/pii/S0301010403000314.

  21. C.J. Strachan, P.F. Taday, D.A. Newnham, K.C. Gordon, J. Zeitler, M. Pepper, T. Rades, Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity, Journal of Pharmaceutical Sciences 94(4), 837 (2005). https://doi.org/10.1002/jps.20281. http://www.sciencedirect.com/science/article/pii/S0022354916317440.

  22. M. Kawase, T. Saito, M. Ogawa, Uejima, Y. Hatsuda, S. Kawanishi, Y. Hirotani, M. Myotoku, K. Ikeda, H. Konishi, I.G.A. Ikumi, J. Yamakawa, S. Nishizawa, K. Yamamoto, T.A.N.I. Masahiko, Application of terahertz absorption spectroscopy to evaluation of aging variation of medicine:, Anal. Sci. 27(2), 209 (2011).

  23. J. Neu, C.T. Nemes, K.P. Regan, M.R.C. Williams, C.A. Schmuttenmaer, Exploring the solid state phase transition in dl-norvaline with terahertz spectroscopy, Phys. Chem. Chem. Phys. 20, 276 (2018). https://doi.org/10.1039/C7CP05479C.

  24. J. Neu, H. Nikonow, C.A. Schmuttenmaer, Terahertz spectroscopy and density functional theory calculations of dl-norleucine and dl-methionine, J. Phys. Chem. A (2018). https://doi.org/10.1021/acs.jpca.8b04978.

  25. J. Neu, E.A. Stone, J.A. Spies, G. Storch, A.S. Hatano, B.Q. Mercado, S.J. Miller, C.A. Schmuttenmaer, Terahertz spectroscopy of tetrameric peptides, J. Phys. Chem. Lett. 10(10), 2624 (2019). https://doi.org/10.1021/acs.jpclett.9b01091.

  26. M.T. Ruggiero, W. Zhang, A.D. Bond, D.M. Mittleman, J.A. Zeitler, Uncovering the connection between low-frequency dynamics and phase transformation phenomena in molecular solids, Phys. Rev. Lett. 120(19), 196002 (2018). https://doi.org/10.1103/PhysRevLett.120.196002.

  27. T. Ruggiero Michael, S. Juraj, O. Roberto, Z.J. Axel, M. Korter Timothy, Measuring the elasticity of poly-l-proline helices with terahertz spectroscopy, Angew. Chem. Int. Ed. 55(24), 6877 (2016). https://doi.org/10.1002/anie.201602268.

  28. M.D. King, W.D. Buchanan, T.M. Korter, Understanding the terahertz spectra of crystalline pharmaceuticals: Terahertz spectroscopy and solid-state density functional theory study of (s)-(+)-ibuprofen and (rs)-ibuprofen, J. Pharm. Sci. 100(3), 1116 (2011). https://doi.org/10.1002/jps.22339.

  29. E.M. Witko, T.M. Korter, Investigation of the low-frequency vibrations of crystalline tartaric acid using terahertz spectroscopy and solid-state density functional theory, J. Phys. Chem. A 115(35), 10052 (2011). https://doi.org/10.1021/jp204854e.

  30. D.G. Allis, D.A. Prokhorova, T.M. Korter, Solid-state modeling of the terahertz spectrum of the high explosive hmx, J. Phys. Chem. A 110(5), 1951 (2006). https://doi.org/10.1021/jp0554285.

  31. M.R.C. Williams, D.J. Aschaffenburg, B.K. Ofori-Okai, C.A. Schmuttenmaer, Intermolecular Vibrations in Hydrophobic Amino Acid Crystals: Experiments and Calculations, J. Phys. Chem. B 117(36), 10444 (2013).

  32. A.B. True, K. Schroeck, T.A. French, C.A. Schmuttenmaer, Terahertz spectroscopy of histidine enantiomers and polymorphs, J. Infrared, Millimeter, Terahertz Waves 32(5), 691 (2011). https://doi.org/10.1007/s10762-010-9645-9.

  33. N.Y. Tan, M.T. Ruggiero, C. Orellana-Tavra, T. Tian, A.D. Bond, T.M. Korter, D. Fairen-Jimenez, J. Axel Zeitler, Investigation of the terahertz vibrational modes of zif-8 and zif-90 with terahertz time-domain spectroscopy, Chem. Commun. 51, 16037 (2015). https://doi.org/10.1039/C5CC06455D.

  34. J. Neu, C.A. Schmuttenmaer, Tutorial: An introduction to terahertz time domain spectroscopy (thz-tds), J. Appl. Phys. 124(22), 231101 (2018). https://aip.scitation.org/doi/full/10.1063/1.5047659.

  35. V.A. Markel, Introduction to the maxwell garnett approximation: tutorial, J. Opt. Soc. Am. A 33(7), 1244 (2016). http://josaa.osa.org/abstract.cfm?URI=josaa-33-7-1244.

  36. D.A.G. Bruggeman, Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen, Ann. Phys. 416(7), 636 (1935). https://doi.org/10.1002/andp.19354160705.

  37. H. Itoh, T. Yamane, T. Ashida, M. Kakudo, Carnosine (β-alanyl-l-histidine), Acta Crystallographica Section B 33(9), 2959 (1977). https://doi.org/10.1107/S0567740877009972.

  38. J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, Thz imaging and sensing for security applications-explosives, weapons and drugs, Semicond. Sci. Technol. 20(7), S266 (2005). http://stacks.iop.org/0268-1242/20/i=7/a=018.

  39. M.D. King, W.D. Buchanan, T.M. Korter, Identification and quantification of polymorphism in the pharmaceutical compound diclofenac acid by terahertz spectroscopy and solid-state density functional theory, Anal. Chem. 83(10), 3786 (2011). https://doi.org/10.1021/ac2001934.

  40. A.J. Zeitler, T.F. Philip, A. Newnham David, M. Pepper, G.C. Keith, T. Rades, Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review, J. Pharm. Pharmacol. 59(2), 209 (2007). https://doi.org/10.1211/jpp.59.2.0008.

  41. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The siesta method for ab initio order- n materials simulation, J. Phys.: Condens. Matter 14(11), 2745 (2002). http://stacks.iop.org/0953-8984/14/i=11/a=302.

  42. K. Berland, P. Hyldgaard, Exchange functional that tests the robustness of the plasmon description of the van der waals density functional, Phys. Rev. B 89(3), 035412 (2014). https://link.aps.org/doi/10.1103/PhysRevB.89.035412.

  43. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004). http://link.aps.org/doi/10.1103/PhysRevLett.92.246401.

  44. A.B. True, K. Schroeck, T.A. French, C.A. Schmuttenmaer, Terahertz spectroscopy of histidine enantiomers and polymorphs, J. Infrared, Millimeter, Terahertz Waves 32(5), 691 (2011).

  45. R.D. King-Smith, D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47(3), 1651 (1993). http://link.aps.org/doi/10.1103/PhysRevB.47.1651.

  46. D. Fernández-Torre, R. Escribano, T. Archer, J.M. Pruneda, E. Artacho, First-principles infrared spectrum of nitric acid and nitric acid monohydrate crystals, J. Phys. Chem. A 108(47), 10535 (2004). https://doi.org/10.1021/jp047249d.

  47. P.M. Hakey, D.G. Allis, M.R. Hudson, W. Ouellette, T.M. Korter, Terahertz spectroscopic investigation of s-(+)- ketamine hydrochloride and vibrational assignment by density functional theory, J. Phys. Chem. A 114(12), 4364 (2010). https://doi.org/10.1021/jp910861m.

Download references

Acknowledgments

We thank Brandon Q. Mercado for measuring the powder XRD spectra, and Batop GmbH for providing the photoconductive antennas at a discount. JN also thanks Nikhil S. Malvankar for financial support.

Funding

This study is financially supported by the National Science Foundation under grant no. NSF CHE—CSDMA 1465085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Neu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(RAR 349 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neu, J., Schmuttenmaer, C.A. Terahertz Spectroscopy and Density Functional Theory Investigation of the Dipeptide L-Carnosine. J Infrared Milli Terahz Waves 41, 1366–1377 (2020). https://doi.org/10.1007/s10762-019-00636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00636-7

Keywords

Navigation