Skip to main content
Log in

A G-Band 2-Pixel Heterodyne Receiver with Integrated Local Oscillator Chain

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A 2-pixel heterodyne receiver working in the 173–205-GHz band is presented in this paper. This receiver prototype is mainly composed of two balanced Schottky-based quadrature mixers and an integrated local oscillator (LO) chain. Based on sub-harmonically pumped mixing and quadrature coupling schemes, the proposed receiver operates in double sideband (DSB) mode or single sideband (SSB) mode. With combination of an external intermediate frequency (IF) 3-dB quadrature hybrid, the receiver can furtherly operate in sideband separation (2SB) mode. E-plane Riblet short-slot couplers combined with probe transitions are firstly employed in the radio frequency (RF) and LO path to realize quadrature configuration simultaneously; detailed theoretical derivation on 2SB operation is also given. The 2-pixel receiver is fabricated and tested, the measured SSB conversion loss of each channel achieves 12–20 dB when pumped with 18 dBm of input power at Ku-band, and the imbalance of conversion loss is less than 2 dB between all the IF ports. The typical sideband rejection ratio (SRR) is 12–16 dB over the operation frequency band. The corresponding achievements are valuable in the follow-up focal plane array detection system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Y. Serizawa, Y. Sekimoto, M. Kamikura, W. L. Shan, T. Ito, T. Tamura, T. Noguchi, Development of a 385-500 GHz sideband-separating balanced SIS mixer, Journal of Infrared, Millimeter and Terahertz Waves, vol. 33, pp. 999–1017, 2012.

    Article  Google Scholar 

  2. C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, et al, SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window, Proceedings of 20th International Symposium on Space Terahertz Technology, pp. 90–96, 2009.

    Google Scholar 

  3. P. Sobis, A. Emrich and M. Hjorth, STEAMR receiver chain, Proceedings of 20th International Symposium on Space Terahertz Technology, pp. 90–96, 2009.

    Google Scholar 

  4. Urs U. Graf, Cornelia E. Honingh, Karl Jacobs, Jurgen Stutzki, Terahertz heterodyne array receivers for astronomy, Journal of Infrared, Millimeter and Terahertz Waves, vol. 36, pp. 896–921, 2015.

    Article  Google Scholar 

  5. P. Sobis, A. Emrich, and J. Stake, A low VSWR 2SB Schottky receiver, IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 430–411, 2011.

    Google Scholar 

  6. J. W. Lee, C. H. Kim, H. Kang, B. Lee, J. Han, S. H. Lee, Development of 230 GHz radio receiver system for SRAO, Journal of the Korean Astronomical Society, vol. 46, pp. 225–234, 2013.

    Article  Google Scholar 

  7. S. C. Shi, High-sensitivity superconducting receivers developed for mm & submm astronomy in China, Proceedings of the 42nd European Microwave Conference, pp. 1343–1346, 2012.

    Google Scholar 

  8. U. U. Graft, C. E. Honingh, K. Jacobs, Terahertz Heterodyne Array Receivers for Astronomy, Journal of Infrared, Millimeter and Terahertz Waves, vol. 36, pp. 896–921, 2015.

    Article  Google Scholar 

  9. M. Kamikura, Y. Tomimura, Y. Sekimoto, S. Asayama, W. Shan, et al, A 385-500 GHz sideband-separating (2SB) SIS mixer based on a waveguide split-block coupler, Journal of Infrared, Millimeter and Terahertz Waves, vol. 27, no. 1, pp. 37–53, 2006.

    Article  Google Scholar 

  10. W. L. Shan, J. yang, S.C. Shi, Q. J. Yao, Y. X. Zuo, S. H. Chen, et al, A multi-beam 2SB receiver for millimeter-wave radio astronomy, Proceedings of 20th International Symposium on Space Terahertz Technology, pp. 20–22, 2009.

  11. J. W. Lee, C. H. Kim, H. Kang, B. Lee, J. Han, S. H. Lee, et al, Development of 230 GHz radio receiver system for SRAO, Journal of the Korean Astronomical Society, vol. 46, pp. 225–234, 2013.

    Article  Google Scholar 

  12. ESA SP-1313/5 Candidate Earth Explorer Core mission-Reports for Assessment: PREMIER-Process Exploration through Measurements of Infrared and millimeter-wave Emitted Radiation, 2008, ISBN 978–92–9221-406-7, ISSN 0379–6566.

  13. B. Billade, V. Belitsky, A. Pavolotsky, I. Lapkin, J. Kooi, ALMA band 5 (163-211 GHz) sideband separation mixer, Proceedings of 20th International Symposium on Space Terahertz Technology, pp.19–23, 2009.

  14. W. L. Shan, J. Yang, S. C. Shi, et al, Development of superconducting spectroscopic array receiver: a multibeam 2SB SIS receiver for millimeter-wave radio astronomy, IEEE Transactions on Terahertz Science and Technology, vol. 2, no. 6, pp. 740–741, 2012.

    Article  Google Scholar 

  15. Z. Chen, J. P. Xu, Design of a W-band frequency tripler for broadband operation based on a modified equivalent circuit model of GaAs Schottky varistor diode, Journal of Infrared, Millimeter and Terahertz Waves, vol. 34, no.1, pp. 28–46, 2013.

    Article  Google Scholar 

  16. P. Sobis, J. Stake and A. Emrich, A 170 GHz 45 degree hybrid for submillimeter wave sideband sepatating subharmonic mixers, IEEE Microwave and Wireless Components Letters, vol. 18, no. 10, pp. 680–682, 2008.

    Article  Google Scholar 

  17. P. Sobis, A. Emrich, and J. Stake, A low VSWR 2SB Schottky receiver, IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 2, pp. 403–411, 2011.

    Article  Google Scholar 

  18. S. Asayama, H. Ogawa, T. Noguchi, et al, An integrated sideband-separating SIS mixer based on waveguide split block for 100 GHz band with 4.0-8.0 GHz IF, Journal of Infrared, Millimeter and Terahertz Waves, vol. 25, no.1, pp. 107–117, 2004.

    Article  Google Scholar 

  19. A. R. Kerr, S. K. Pan, S. M. X. Claude, P. Dindo, et al, Development of the ALMA band-3 and band-6 sideband-separating SIS mixers, IEEE Transactions on Terahertz Science and Technology, vol. 4, no. 2, pp. 201–212, 2014.

    Article  Google Scholar 

  20. V. Vassilev, V. Belitsky, C. Risacher, I. Lapkin, A. Pavolotsky and E. Sundin, A sideband separating mixer for 85-115 GHz, IEEE Microwave and Wireless Components Letters, vol. 14, no. 6, pp. 256–258, 2008.

    Article  Google Scholar 

  21. A. A. Sarhan, M. Tayarani, H. Oraizi, N. Ghadimi, I. Hamidi, Optimized broad band Riblet short slot waveguide coupler for X-band applications, International Journal of Scientific & Engineering Research, vol. 4, no. 8, pp. 1021–1023, 2013.

    Google Scholar 

  22. G. A. Kumar, B. Biswas, D. R. Poddar, A compact broadband Riblet-type three-way power divider in rectangular waveguide, IEEE Microwave and Wireless Components Letters, vol. 27, no. 2, pp. 141–143, 2017.

    Article  Google Scholar 

  23. Jeffrey L. Hesler, Haiyong Xu, Alex Brissette and William L. Bishop, Development and characterization of THz planar Schottky diode mixers and detectors, Proceedings of 19th International Symposium on Space Terahertz Technology, pp. 224–225, 2008.

  24. B. T. Bulcha, J. L. Hesler, V. Drakinskiy, et al, Design and characterization of 1.8-3.2 THz Schottky-based harmonic mixers, IEEE Transaction on Terahertz Science and Technology, vol. 6, no. 5, pp. 737–746, 2016.

    Article  Google Scholar 

  25. Y. Zhang, W. Zhao, Y. F. Wang, et al, A 220 GHz subharmonic mixer based on Schottky diodes with an accurate terahertz diode model, vol. 58, no. 10, pp. 2311–2316, 2016.

  26. R. Knochel, Broadband flat coupling two-branch and multibranch directional coupler, 1999 IEEE MTT-S International Microwave Symposium, CA, USA, pp. 1327–1330, 1999.

  27. R. Levy, L. Lind, Synthesis of symmetrical branch-guide directional couplers, IEEE Transactions on Microwave Theory and Techniques, vol. 16, no. 2, pp. 80–89, 1968.

    Article  Google Scholar 

  28. D. M. Pozar, Microwave Engineering, 4th Edition, John Wiley and Sons Inc, 2012.

  29. J. W. Lamb, K. A. Cleary, R. S. Gawande, et al, Sideband-separating MMIC receivers for observation in the 3-mm band, Proceedings of the 2016 SPIE, vol. 9914, pp. H1-H18, 2016.

    Google Scholar 

  30. Z. Chen, X. Chen, W. Z. Cui, X. J. Li, J. X. Ge, A high-power G-band Schottky local oscillator chain for submillimeter wave heterodyne detection, Journal of Infrared, Millimeter and Terahertz Waves, vol. 36, no.5, pp. 430–444, 2015.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 61601232) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160963). This work was also partially supported by the National Key Laboratory Foundation of China (9140C530301140C53012), the Innovation Foundation of Shanghai Space Science and Technology (SAST2015092), and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Chen, X., Cui, W. et al. A G-Band 2-Pixel Heterodyne Receiver with Integrated Local Oscillator Chain. J Infrared Milli Terahz Waves 40, 1035–1051 (2019). https://doi.org/10.1007/s10762-019-00625-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00625-w

Keywords

Navigation