Skip to main content
Log in

Design and Experiment of 4 MW Ka Band Sheet Electron Beam TWT

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

High-power vacuum electron devices (VEDs) are attractive, because of their broad applications, such as advance radars, electromagnetic warfare, and plasma reactors. In this paper, a Ka band mega-watt sheet electron beam traveling wave tube (TWT) is reported. A two-staged rectangular waveguide grating slow wave structure (SWS) driven by a sheet electron beam (20 mm × 1 mm, 164.8 kV, 850 A, 20 ns) is used in this TWT. In order to suppress the self-excited oscillation, a rectangular BeO attenuator is inserted between the two-staged SWSs. The experimental results show that the TWT can produce more than 2 MW output power from 34.2 to 35.5 GHz. And the maximum output power is 4.24 MW at 35 GHz, corresponding to the gain of 25.9 dB. In the future, the TWT will be used to perform research on biomedical effects and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Benford, J. A. Swegle and E. Schamiloglu, High Power Microwaves 2nd ed., New York: Taylor & Francis 2007, pp. 153–156.

    Book  Google Scholar 

  2. J.H.Booske, R.J.Dobbs, Colin D. Joye, et al, “Vacuum Electronic High Power Terahertz Sources”, IEEE Trans,Terahertz Sci & Tec, 2011,1(1):54–75

    Article  Google Scholar 

  3. Y. Zhang, Y. Gong, Z. Wang, S. Liu, Y. Wei, Z. Duan, X. Shi, Y. Wang, L. Zhang, Q. Zhou, J. Liao, “Study of High-Power Ka-Band Rectangular Double-Grating Sheet Beam BWO,” IEEE Trans. Plasma Sci., vol. 42, no. 6, Part:1, Jun. 2014. https://doi.org/10.1109/TPS.2014.2301719

  4. Z. Wang, Y. Gong, Y. Wei, Z. Duan, Y. Zhang, L. Yue, H. Gong, H. Yin, Z. Lu, J. Xu, J. Feng, “High Power Millimeter Wave BWO Driven by Sheet Electron Beam,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 471–477, Jan. 2013. https://doi.org/10.1109/TED.2012.2226587.

    Article  Google Scholar 

  5. A.V.Azhannikov, N.S.Ginzburg, P.V.Kalinin, S.A.Kuznetsov, N.Y.Peskov, et al, Powerful THz-range FEL based on intense parallel sheet beams: design, simulations and recent result, 2018,43rd International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz:1-2

  6. D. Shiffler, J. A. Nation, L. Schachter, J. D. bet-s, and G. S. Kerslick, “A high-power two-stage traveling-wave tube amplifier,” J. Appl. Phys., Vol. 70, no. 1, pp. 106–113. Jul. 1991. https://doi.org/10.1063/1.350322

    Article  Google Scholar 

  7. S.A.Kisanov, A.I.Klimov and S.D.Korovin, et al, ' S-band Resonant BWO with 5GW Pulse Power, beams 2002,255–258

  8. B. E. Carlsten, S. J. Russell, L. M. Earley, F. L. Krawczyk, J. M. Potter, P. Ferguson,S. Humphries, “Technology Development for a mm-Wave Sheet-Beam Traveling-Wave Tube,” IEEE Trans. Plasma Sci., vol. 33, no. 1, pp. 85–93, Feb. 2005. https://doi.org/10.1109/TPS.2004.841172

    Article  Google Scholar 

  9. Y. Wei, H. Liu, J. He, et al. The small signal analysis of a centered dielectric-rod loaded, arbitrarily-shaped helical groove traveling-wave tube. Journal of Infrared, Millimeter, and Terahertz Waves (JIMTW), 2007, 28(12):1051–1062

    Article  Google Scholar 

  10. Guo Guo, Yanyu Wei, Linna Yue, Yubing Gong, Xiong Xu, Jun He, Guoging Zhao, Wenxiang Wang, Gun-Sik Park. A Tapered Ridge-loaded Folded Waveguide Slow-wave Structure for Millimeter-wave Traveling-wave Tube. Journal of Infrared, Millimeter, and Terahertz Waves (JIMTW). 2012, 33(2): 131–140

    Article  Google Scholar 

  11. Y. Shin, A. Baig, L. R. Barnett, W. Tsai, N. C. Luhmann Jr, “0.22THz Sheet Beam TWT Amplifier: System Design and Analysis,” in Proc. IEEE Int. Vac. Electron. Conf. (IVEC), pp 61–62, Feb. 2011. https://doi.org/10.1109/TED.2011.2173575

  12. A. Baig, D. Gamzina, N. C. Luhmann Jr, et al, “Performance of a Nano-CNC Machined 220 GHz Traveling-Wave Tube Amplifier” IEEE.Trans.E.D. 2017, ,64(5):2390–2397

  13. Xiaofan Yang, Yong Fan, Bo Zhang, Longfang Ye, Xiong Xu. A Novel Terahertz Rat-Race Hybrid Coupler Based on PPDW. Journal of Infrared, Millimeter, and Terahertz Waves (JIMTW). 2011, 32(11): 1291–1298

    Article  Google Scholar 

  14. Wang Zhanliang, Gong Yubin, Wei Yanyu, et al. The conditions for stable sheetelectron beams transport in periodic permanent magnet fields. Journal of Infrared, Millimeter, and Terahertz Waves JIMTW, 2010,31(6):649–658

    Google Scholar 

  15. A.A. Margos, Z.C. Ioannidis, I.G. Tigelis,“Dispersion Characteristics of a rectangular waveguide grating”, IEEE.Trans.PS. 2003, 31(5):1075–1082

    Google Scholar 

  16. CST Corp., CST PS Tutorials. [Online]. Available: http://www.cstchina.cn/.

  17. A.V. Azhannikov, A.V. Burdakov, V.S. Burmasov, D.E. Gavrilenko, I.A. Ivanov, et al, Diagnostic System to Study Sub-THz Emission from Open Trap at Strong Beam-Plasma Interaction, AIP Conference Proceedings 1771, 050009,2016

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under (Grant Nos. 61531010, 61371052 and 61871095) and by the Joint Project of the Ministry of Education (Grant No. 6141A02022402) and Cooperation Project of Sichuan (Grant No. 2018HH0132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanliang Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, Y., Gong, H. et al. Design and Experiment of 4 MW Ka Band Sheet Electron Beam TWT. J Infrared Milli Terahz Waves 40, 637–647 (2019). https://doi.org/10.1007/s10762-019-00591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00591-3

Keywords

Navigation