Skip to main content
Log in

Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We investigate properties of MBE grown photoconductive terahertz (THz) antennas based on the InGaAs/InAlAs/InP material system aimed for an excitation wavelength of approx. 1060 nm. Therefore, we analyze several different approaches concerning growth parameters, layer and material compositions as well as doping. The carrier dynamics are probed via transient white-light pump-probe spectroscopy as well as THz Time Domain Spectroscopy (TDS) measurements. We find that the electron capture probability is reduced for higher electron energies. By adjusting the material band gap this can be resolved and lifetimes of 1.3 ps are obtained. These short lifetimes enable the detection of THz TDS spectra with a bandwidth exceeding 4 THz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., vol. 45, no. 3, p. 284, 1984.

    Article  Google Scholar 

  2. F. W. Smith, H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang, “Picosecond GaAs-based photoconductive optoelectronic detectors,” Appl. Phys. Lett., vol. 54, no. 10, p. 890, 1989.

    Article  Google Scholar 

  3. J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett., vol. 87, no. 25, p. 252103, 2005.

    Article  Google Scholar 

  4. J. Mangeney, N. Chimot, L. Meignien, N. Zerounian, P. Crozat, K. Blary, J. F. Lampin, and P. Mounaix, “Emission characteristics of ion-irradiated In0.53Ga0.47As based photoconductive antennas excited at 1.55 μm.,” Opt. Express, vol. 15, no. 14, pp. 8943–50, Jul. 2007.

    Article  Google Scholar 

  5. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett., vol. 86, no. 5, p. 051104, 2005.

    Article  Google Scholar 

  6. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett., vol. 86, no. 16, p. 163504, 2005.

    Article  Google Scholar 

  7. A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett., vol. 96, no. 14, p. 141108, 2010.

    Article  Google Scholar 

  8. O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett., vol. 98, no. 12, p. 121107, 2011.

    Article  Google Scholar 

  9. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express, vol. 16, no. 13, pp. 9565–9570, 2008.

    Article  Google Scholar 

  10. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett., vol. 61, no. 15, p. 1784, 1992.

    Article  Google Scholar 

  11. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett., vol. 67, no. 24, p. 3523, 1995.

    Article  Google Scholar 

  12. P. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E, vol. 53, no. 4, pp. 3052–3054, 1996.

    Article  Google Scholar 

  13. R. H. M. Groeneveld and D. Grischkowsky, “Picosecond time-resolved far-infrared experiments on carriers and excitons in GaAs-AlGaAs multiple quantum wells,” J. Opt. Soc. Am. B, vol. 11, no. 12, p. 2502, Dec. 1994.

    Article  Google Scholar 

  14. R. Kaindl, M. Carnahan, D. Hägele, R. Lövenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature, vol. 423, p. 734, 2003.

    Article  Google Scholar 

  15. S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. Steiner, M. Kira, S. Koch, A. Leitenstorfer, and R. Huber, “Terahertz Coherent Control of Optically Dark Paraexcitons in Cu2O,” Phys. Rev. Lett., vol. 101, no. 24, p. 246401, Dec. 2008.

  16. D. Golde, M. Wagner, D. Stehr, H. Schneider, M. Helm, A. M. Andrews, T. Roch, G. Strasser, M. Kira, and S. W. Koch, “Fano Signatures in the Intersubband Terahertz Response of Optically Excited Semiconductor Quantum Wells,” Phys. Rev. Lett., vol. 102, p. 127403, 2009.

    Article  Google Scholar 

  17. B. Ewers, N. S. Köster, R. Woscholski, M. Koch, S. Chatterjee, G. Khitrova, H. M. Gibbs, a. C. Klettke, M. Kira, and S. W. Koch, “Ionization of coherent excitons by strong terahertz fields,” Phys. Rev. B, vol. 85, no. 7, p. 075307, Feb. 2012.

  18. T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett., vol. 385, no. 1–2, pp. 45–51, Feb. 2004.

    Article  Google Scholar 

  19. V. Křesálek and T. Gavenda, “Using Terahertz Spectroscopy for Observing the Kinetics of Recrystallisation of Polybutene-1,” J. Infrared, Millimeter, Terahertz Waves, vol. 34, no. 2, pp. 187–193, Jan. 2013.

    Article  Google Scholar 

  20. W. Qiao, K. Yang, A. Thoma, and T. Dekorsy, “Dielectric Relaxation of HCl and NaCl Solutions Investigated by Terahertz Time-Domain Spectroscopy,” J. Infrared, Millimeter, Terahertz Waves, vol. 33, no. 10, pp. 1029–1038, Jun. 2012.

    Article  Google Scholar 

  21. H. Zhang, K. Siegrist, D. F. Plusquellic, and S. K. Gregurick, “Terahertz spectra and normal mode analysis of the crystalline VA class dipeptide nanotubes.,” J. Am. Chem. Soc., vol. 130, no. 52, pp. 17846–57, Dec. 2008.

    Article  Google Scholar 

  22. C.-C. Chen, D.-J. Lee, T. Pollock, and J. F. Whitaker, “Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings.,” Opt. Express, vol. 18, no. 4, pp. 3477–86, Feb. 2010.

    Article  Google Scholar 

  23. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys., vol. 70, no. 8, pp. 1325–1379, Aug. 2007.

    Article  Google Scholar 

  24. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives.,” Appl. Opt., vol. 49, no. 19, pp. E48–57, Jul. 2010.

    Article  Google Scholar 

  25. J. F. Federici, “Review of Moisture and Liquid Detection and Mapping using Terahertz Imaging,” J. Infrared, Millimeter, Terahertz Waves, vol. 33, no. 2, pp. 97–126, Jan. 2012.

    Article  MathSciNet  Google Scholar 

  26. D. Banerjee, W. von Spiegel, M. D. Thomson, S. Schabel, and H. G. Roskos, “Diagnosing water content in paper by terahertz radiation,” Opt. Express, vol. 16, no. 12, pp. 3003–3006, 2008.

    Article  Google Scholar 

  27. R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 μm excitation : six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express, vol. 19, no. 27, pp. 122–126, 2011.

    Article  Google Scholar 

  28. R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 μW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett., vol. 103, no. 6, p. 061103, 2013.

    Article  Google Scholar 

  29. B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett., vol. 104, no. 17, p. 172103, Apr. 2014.

    Article  Google Scholar 

  30. R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors : 6 THz bandwidth and 90dB dynamic range,” Opt. Express, vol. 22, no. 16, pp. 615–623, 2014.

    Article  Google Scholar 

  31. A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express, vol. 22, no. 11, p. 12982, May 2014.

    Article  Google Scholar 

  32. A. Bic, K. Bertulis, and A. Krotkus, “Optoelectronic terahertz radiation system based on femtosecond 1 μm laser pulses and GaBiAs detector,” Electron. Lett., vol. 44, no. 19, 2008.

  33. V. Pačebutas, a. Bičiūnas, S. Balakauskas, a. Krotkus, G. Andriukaitis, D. Lorenc, a. Pugžlys, and a. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett., vol. 97, no. 3, p. 031111, 2010.

  34. I. Hinkov, G. Harzendorf, S. Kluska, B. Hinkov, K. Kamaruzaman, R. Beigang, J. Heinrich, S. Hoefling, and A. Forchel, “Generation of terahertz pulsed radiation from photoconductive emitters using 1060 nm laser excitation,” in 15th International Conference on Terahertz Electronics. IRMMW-THz. Joint 32nd International Conference on, 2007, pp. 1–2.

  35. R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low Temperature Grown Be-doped InGaAs/InAlAs Photoconductive Antennas Excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves, vol. 34, no. 3–4, pp. 231–237, Mar. 2013.

    Article  Google Scholar 

  36. B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett., vol. 74, no. 10, p. 1439, 1999.

    Article  Google Scholar 

  37. H. Künzel, J. Böttcher, R. Gibis, H. Hoenow, and C. Heedt, “Low-temperature MBE of AlGaInAs lattice-matched to InP,” J. Cryst. Growth, vol. 127, no. 1–4, pp. 519–522, Feb. 1993.

    Article  Google Scholar 

  38. H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett., vol. 61, no. 11, p. 1347, 1992.

    Article  Google Scholar 

  39. A. Mircea, A. Mitonneau, J. Hallais, and M. Jaros, “Study of the main electron trap in Ga1-xInxAs alloys,” Phys. Rev. B, vol. 16, no. 8, pp. 3665–3675, Oct. 1977.

    Article  Google Scholar 

  40. A. Irvine and D. Palmer, “First observation of the EL2 lattice defect in indium gallium arsenide grown by molecular-beam epitaxy,” Phys. Rev. Lett., vol. 68, no. 14, pp. 2168–2171, 1992.

    Article  Google Scholar 

  41. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev., vol. 92, p. 1324, 1953.

    Article  Google Scholar 

  42. S. E. Esipov and Y. B. Levinson, “The temperature and energy distribution of photoexcited hot electrons,” Adv. Phys., vol. 36, no. 3, pp. 331–383, Jan. 1987.

    Article  Google Scholar 

  43. J. Kash, J. Tsang, and J. Hvam, “Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs,” Phys. Rev. Lett., vol. 54, no. 19, pp. 2151–2154, 1985.

    Article  Google Scholar 

  44. W. Pötz and P. Kocevar, Hot Carriers in Semiconductor Nanostructures. Elsevier, 1992, pp. 87–120.

  45. R. Pässler, “Nonradiative multiphonon capture of thermal and hot carriers by deep traps in semiconductors for the alternative regimes of small and large lattice relaxation,” Czechoslov. J. Phys., vol. 34, pp. 377–401, 1984.

    Article  Google Scholar 

  46. H. Goto, Y. Adachi, and T. Ikoma, “Carrier capture by multiphonon emission at extrinsic deep centers induced by self-trapping in GaAs,” J. Appl. Phys., vol. 54, no. 4, p. 1909, 1983.

    Article  Google Scholar 

  47. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 μm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers.,” Opt. Express, vol. 18, no. 3, pp. 2296–301, Feb. 2010.

    Article  Google Scholar 

  48. L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron., vol. 7, no. 4, pp. 615–623, 2001.

    Article  Google Scholar 

  49. E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys., vol. 104, no. 5, p. 053113, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. B. Dietz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietz, R.J.B., Brahm, A., Velauthapillai, A. et al. Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation. J Infrared Milli Terahz Waves 36, 60–71 (2015). https://doi.org/10.1007/s10762-014-0119-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0119-3

Keywords

Navigation