Skip to main content
Log in

Gypenoside XLIX Activates the Sirt1/Nrf2 Signaling Pathway to Inhibit NLRP3 Inflammasome Activation to Alleviate Septic Acute Lung Injury

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Currently, treatment options for acute lung injury (ALI) are limited. Gypenoside XLIX (Gyp-XLIX) is known for its anti-inflammatory properties, but there is a lack of extensive research on its effects against ALI. This study induced ALI in mice through cecal ligation and puncture surgery and investigated the biological activity and potential mechanisms of Gypenoside XLIX (40 mg/kg) by intraperitoneal injection. The in vitro ALI model was established using mouse lung epithelial (MLE-12) cells stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Various methods, including Hematoxylin and Eosin (H&E) staining, biochemical assay kits, Quantitative Polymerase Chain Reaction (qPCR) analysis, Western blotting, Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) assay, immunofluorescence, and flow cytometry, were employed for this research. The results indicated that pretreatment with Gypenoside XLIX significantly alleviated pathological damage in mouse lung tissues and reduced the expression levels of inflammatory factors. Additionally, Gypenoside XLIX inhibited ROS levels and NLRP3 inflammasome, possibly mediated by the Sirt1/Nrf2 signaling pathway. Moreover, Gypenoside XLIX significantly inhibited sepsis-induced lung cell apoptosis and excessive autophagy of mitochondria. Specifically, it suppressed mitochondrial pathway apoptosis and the Pink1/Parkin pathway of mitochondrial autophagy. These findings reveal the multifaceted effects of Gypenoside XLIX in anti-inflammatory, antioxidative, and inhibition of cell apoptosis and autophagy. This provides strong support for its therapeutic potential in sepsis-related lung injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. Matot, I., and C.L. Sprung. 2001. Definition of sepsis. Intensive Care Medicine 27 (Suppl 1): S3-9.

    Article  PubMed  Google Scholar 

  2. Guo, N.K., H. She, L. Tan, Y.Q. Zhou, C.Q. Tang, X.Y. Peng, C.H. Ma, T. Li, and L.M. Liu. 2023. Nano Parthenolide Improves Intestinal Barrier Function of Sepsis by Inhibiting Apoptosis and ROS via 5-HTR2A. International Journal of Nanomedicine 18: 693–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shen, X.F., K. Cao, J.P. Jiang, W.X. Guan, and J.F. Du. 2017. Neutrophil dysregulation during sepsis: An overview and update. Journal of Cellular and Molecular Medicine 21 (9): 1687–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gotts, J.E., and M.A. Matthay. 2016. Sepsis: Pathophysiology and clinical management. BMJ (Clinical Research ed.) 353: i1585.

    PubMed  Google Scholar 

  5. Bauernfeind, F.G., G. Horvath, A. Stutz, E.S. Alnemri, K. MacDonald, D. Speert, T. Fernandes-Alnemri, J. Wu, B.G. Monks, K.A. Fitzgerald, V. Hornung, and E. Latz. 2009. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. Journal of Immunology (Baltimore, Md. : 1950) 183 (2): 787–91.

    Article  CAS  PubMed  Google Scholar 

  6. Bai, B., Y. Yang, Q. Wang, M. Li, C. Tian, Y. Liu, L.H.H. Aung, P.F. Li, T. Yu, and X.M. Chu. 2020. NLRP3 inflammasome in endothelial dysfunction. Cell Death & Disease 11 (9): 776.

    Article  CAS  Google Scholar 

  7. Xie, Z., H. Hou, D. Luo, R. An, Y. Zhao, and C. Qiu. 2021. ROS-dependent lipid peroxidation and reliant antioxidant ferroptosis-suppressor-protein 1 in rheumatoid arthritis: A covert clue for potential therapy. Inflammation 44 (1): 35–47.

    Article  CAS  PubMed  Google Scholar 

  8. He, R., B. Liu, R. Xiong, B. Geng, H. Meng, W. Lin, B. Hao, L. Zhang, W. Wang, W. Jiang, N. Li, and Q. Geng. 2022. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. Cell Death Discovery 8 (1): 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang, X., J. Liu, S. Yao, J. Zheng, X. Gong, and B. Xiao. 2022. Ferulic acid alleviates alveolar epithelial barrier dysfunction in sepsis-induced acute lung injury by activating the Nrf2/HO-1 pathway and inhibiting ferroptosis. Pharmaceutical Biology 60 (1): 2286–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tu, Y., J. Liu, D. Kong, X. Guo, J. Li, Z. Long, J. Peng, Z. Wang, H. Wu, P. Liu, R. Liu, W. Yu, and W. Li. 2023. Irisin drives macrophage anti-inflammatory differentiation via JAK2-STAT6-dependent activation of PPARγ and Nrf2 signaling. Free Radical Biology & Medicine 201: 98–110.

    Article  CAS  Google Scholar 

  11. Luo, J., J. Wang, J. Zhang, A. Sang, X. Ye, Z. Cheng, and X. Li. 2022. Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy- and NF-κB/PPARγ-mediated macrophage polarization. Cells 11 (23).

  12. Li, X., M. Jamal, P. Guo, Z. Jin, F. Zheng, X. Song, J. Zhan, and H. Wu. 2019. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 118: 109363.

  13. Deng, Z., M. Sun, J. Wu, H. Fang, S. Cai, S. An, Q. Huang, Z. Chen, C. Wu, Z. Zhou, H. Hu, and Z. Zeng. 2021. SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death & Disease 12 (2): 217.

    Article  CAS  Google Scholar 

  14. Xu, D., L. Liu, Y. Zhao, L. Yang, J. Cheng, R. Hua, Z. Zhang, and Q. Li. 2020. Melatonin protects mouse testes from palmitic acid-induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1-dependent manner. Journal of Pineal Research 69 (4).

    Article  CAS  PubMed  Google Scholar 

  15. Feng, K., Z. Chen, L. Pengcheng, S. Zhang, and X. Wang. 2019. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. Journal of Cellular Physiology 234 (10): 18192–18205.

    Article  CAS  PubMed  Google Scholar 

  16. Xie, W., L. Deng, M. Lin, X. Huang, R. Qian, D. Xiong, W. Liu, and S. Tang. 2023. Sirtuin1 mediates the protective effects of echinacoside against sepsis-induced acute lung injury via regulating the NOX4-Nrf2 axis. Antioxidants (Basel, Switzerland) 12 (11).

  17. Rajendrasozhan, S., S.R. Yang, V.L. Kinnula, and I. Rahman. 2008. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 177 (8): 861–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin, Q.Q., C.F. Yan, R. Lin, J.Y. Zhang, W.R. Wang, L.N. Yang, and K.F. Zhang. 2012. SIRT1 regulates TNF-α-induced expression of CD40 in 3T3-L1 adipocytes via NF-κB pathway. Cytokine 60 (2): 447–455.

    Article  CAS  PubMed  Google Scholar 

  19. Park, S., J. Shin, J. Bae, D. Han, S.R. Park, J. Shin, S.K. Lee, and H.W. Park. 2020. SIRT1 alleviates LPS-induced IL-1β production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts. Cells 9 (3).

  20. Arioz, B.I., B. Tastan, E. Tarakcioglu, K.U. Tufekci, M. Olcum, N. Ersoy, A. Bagriyanik, K. Genc, and S. Genc. 2019. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Frontiers in Immunology 10: 1511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duangjan, C., P. Rangsinth, S. Zhang, M. Wink, and T. Tencomnao. 2021. anacardium occidentale L. leaf extracts protect against glutamate/H(2)O(2)-induced oxidative toxicity and induce neurite outgrowth: The involvement of SIRT1/Nrf2 signaling pathway and teneurin 4 transmembrane protein. Frontiers in Pharmacology 12: 627738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patruno, A., E. Costantini, A. Ferrone, M. Pesce, F. Diomede, O. Trubiani, and M. Reale. 2020. Short ELF-EMF Exposure Targets SIRT1/Nrf2/HO-1 Signaling in THP-1 Cells. International journal of Molecular Sciences 21 (19).

  23. Cai, H., Q. Liang, and G. Ge. 2016. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling. Neural plasticity 2016: 6362707.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang, Q., H.M. Zang, T. Xing, S.F. Zhang, C. Li, Y. Zhang, Y.H. Dong, X.W. Hu, J.T. Yu, J.G. Wen, J. Jin, J. Li, R. Zhao, T.T. Ma, and X.M. Meng. 2021. Gypenoside XLIX protects against acute kidney injury by suppressing IGFBP7/IGF1R-mediated programmed cell death and inflammation. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 85.

    Article  CAS  PubMed  Google Scholar 

  25. Hui, B., X. Hou, R. Liu, X.H. Liu, and Z. Hu. 2021. Gypenoside inhibits ox-LDL uptake and foam cell formation through enhancing Sirt1-FOXO1 mediated autophagy flux restoration. Life Sciences 264.

    Article  CAS  PubMed  Google Scholar 

  26. Alhasani, R.H., L. Biswas, A.M. Tohari, X. Zhou, J. Reilly, J.F. He, and X. Shu. 2018. Gypenosides protect retinal pigment epithelium cells from oxidative stress. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 112: 76–85.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, H., X. Chen, B. Zong, H. Yuan, Z. Wang, Y. Wei, X. Wang, G. Liu, J. Zhang, S. Li, G. Cheng, Y. Wang, and Y. Ma. 2018. Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation. Journal of Cellular and Molecular Medicine 22 (9): 4437–4448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan, H., J. Cui, F. Liu, W. Zhang, H. Yang, N. He, Z. Dong, and J. Dong. 2022. Malvidin protects against lipopolysaccharide-induced acute liver injury in mice via regulating Nrf2 and NLRP3 pathways and suppressing apoptosis and autophagy. European Journal of Pharmacology 933.

    Article  CAS  PubMed  Google Scholar 

  29. Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3 (6): 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  30. Li, G., C. Hu, Y. Liu, and H. Lin. 2023. Ligustilide, a novel SIRT1 agonist, alleviates lipopolysaccharide-induced acute lung injury through deacetylation of NICD. International Immunopharmacology 121.

    Article  CAS  PubMed  Google Scholar 

  31. Qiu, Y.B., B.B. Wan, G. Liu, Y.X. Wu, D. Chen, M.D. Lu, J.L. Chen, R.Q. Yu, D.Z. Chen, and Q.F. Pang. 2020. Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis. Respiratory Research 21 (1): 232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo, Y., H. Zhang, Z. Lv, Y. Du, D. Li, H. Fang, J. You, L. Yu, and R. Li. 2023. Up-regulated CD38 by daphnetin alleviates lipopolysaccharide-induced lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway. Cell Communication and Signaling : CCS 21 (1): 66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deng, S., J. Li, L. Li, S. Lin, Y. Yang, T. Liu, T. Zhang, G. Xie, D. Wu, and Y. Xu. 2023. Quercetin alleviates lipopolysaccharide-induced acute lung injury by inhibiting ferroptosis via the Sirt1/Nrf2/Gpx4 pathway. International Journal of Molecular Medicine 52 (6).

  34. Ye, J., M. Guan, Y. Lu, D. Zhang, C. Li, and C. Zhou. 2019. Arbutin attenuates LPS-induced lung injury via Sirt1/ Nrf2/ NF-κBp65 pathway. Pulmonary Pharmacology & Therapeutics 54: 53–59.

    Article  CAS  Google Scholar 

  35. Han, B., S. Li, Y. Lv, D. Yang, J. Li, Q. Yang, P. Wu, Z. Lv, and Z. Zhang. 2019. Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Food & Function 10 (9): 5555–5565.

    Article  CAS  Google Scholar 

  36. Levine, B., and G. Kroemer. 2008. Autophagy in the pathogenesis of disease. Cell 132 (1): 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanner, M.A., X. Bu, J.A. Steimle, and P.R. Myers. 1999. The direct release of nitric oxide by gypenosides derived from the herb gynostemma pentaphyllum. Nitric Oxide : Biology and Chemistry 3 (5): 359–365.

    Article  CAS  PubMed  Google Scholar 

  38. Huang, T.H., V.H. Tran, B.D. Roufogalis, and Y. Li. 2007. Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells. Toxicology and Applied Pharmacology 218 (1): 30–36.

    Article  CAS  PubMed  Google Scholar 

  39. Aktan, F., S. Henness, B.D. Roufogalis, and A.J. Ammit. 2003. Gypenosides derived from Gynostemma pentaphyllum suppress NO synthesis in murine macrophages by inhibiting iNOS enzymatic activity and attenuating NF-kappaB-mediated iNOS protein expression. Nitric Oxide : Biology and Chemistry 8 (4): 235–242.

    Article  CAS  PubMed  Google Scholar 

  40. Jiao, Y., T. Zhang, C. Zhang, H. Ji, X. Tong, R. Xia, W. Wang, Z. Ma, and X. Shi. 2021. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Critical Care (London, England) 25 (1): 356.

    Article  PubMed  Google Scholar 

  41. Shah, H.K., T. Sharma, and B.D. Banerjee. 2020. Organochlorine pesticides induce inflammation, ROS production, and DNA damage in human epithelial ovary cells: An in vitro study. Chemosphere 246: 125691.

    Article  CAS  PubMed  Google Scholar 

  42. Kang, R., R. Li, P. Dai, Z. Li, Y. Li, and C. Li. 1987. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production, Environmental pollution (Barking. Essex 251 (2019): 689–698.

    Google Scholar 

  43. Kasai, S., S. Shimizu, Y. Tatara, J. Mimura, and K. Itoh. 2020. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10 (2).

  44. Yang, H., H. Lv, H. Li, X. Ci, and L. Peng. 2019. Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways. Cell Communication and Signaling : CCS 17 (1): 62.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu, Q., Y. Gao, and X. Ci. 2019. Role of Nrf2 and its activators in respiratory diseases. Oxidative Medicine and Cellular Longevity 2019: 7090534.

    PubMed  PubMed Central  Google Scholar 

  46. Nguyen, T., P. Nioi, and C.B. Pickett. 2009. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry 284 (20): 13291–13295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cannavò, L., S. Perrone, V. Viola, L. Marseglia, G. Di Rosa, and E. Gitto. 2021. Oxidative stress and respiratory diseases in preterm newborns. International Journal of Molecular Sciences 22 (22).

  48. Li, J., K. Lu, F. Sun, S. Tan, X. Zhang, W. Sheng, W. Hao, M. Liu, W. Lv, and W. Han. 2021. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. Journal of Translational Medicine 19 (1): 96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, J., S.H. Deng, J. Li, L. Li, F. Zhang, Y. Zou, D.M. Wu, and Y. Xu. 2022. Obacunone alleviates ferroptosis during lipopolysaccharide-induced acute lung injury by upregulating Nrf2-dependent antioxidant responses. Cellular & Molecular Biology Letters 27 (1): 29.

    Article  CAS  Google Scholar 

  50. Leung, P.S., and Y.C. Chan. 2009. Role of oxidative stress in pancreatic inflammation. Antioxidants & Redox Signaling 11 (1): 135–165.

    Article  CAS  Google Scholar 

  51. Hackert, T., and J. Werner. 2011. Antioxidant therapy in acute pancreatitis: Experimental and clinical evidence. Antioxidants & Redox Signaling 15 (10): 2767–2777.

    Article  CAS  Google Scholar 

  52. Fu, C., S. Hao, X. Xu, J. Zhou, Z. Liu, H. Lu, L. Wang, W. Jin, and S. Li. 2019. Activation of SIRT1 ameliorates LPS-induced lung injury in mice via decreasing endothelial tight junction permeability. Acta Pharmacologica Sinica 40 (5): 630–641.

    Article  CAS  PubMed  Google Scholar 

  53. Singh, V., and S. Ubaid. 2020. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation 43 (5): 1589–1598.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao, W., L. Ma, C. Cai, and X. Gong. 2019. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-Induced THP-1 macrophages. International Journal of Biological Sciences 15 (8): 1571–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, Z., G. Xu, Y. Gao, X. Zhan, N. Qin, S. Fu, R. Li, M. Niu, J. Wang, Y. Liu, X. Xiao, and Z. Bai. 2019. Cardamonin from a medicinal herb protects against LPS-induced septic shock by suppressing NLRP3 inflammasome. Acta Pharmaceutica Sinica B 9 (4): 734–744.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ives, A., J. Nomura, F. Martinon, T. Roger, D. LeRoy, J.N. Miner, G. Simon, N. Busso, and A. So. 2015. Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nature Communications 6: 6555.

    Article  CAS  PubMed  Google Scholar 

  57. Tang, K.K., X.Y. Liu, Z.Y. Wang, K.C. Qu, and R.F. Fan. 2019. Trehalose alleviates cadmium-induced brain damage by ameliorating oxidative stress, autophagy inhibition, and apoptosis. Metallomics : Integrated Biometal Science 11 (12): 2043–2051.

    Article  CAS  PubMed  Google Scholar 

  58. Redza-Dutordoir, M., and D.A. Averill-Bates. 2016. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta 1863 (12): 2977–2992.

    Article  CAS  PubMed  Google Scholar 

  59. Würstle, M.L., M.A. Laussmann, and M. Rehm. 2012. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Experimental Cell Research 318 (11): 1213–1220.

    Article  PubMed  Google Scholar 

  60. Doherty, J., and E.H. Baehrecke. 2018. Life, death and autophagy. Nature Cell Biology 20 (10): 1110–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Biasizzo, M., and N. Kopitar-Jerala. 2020. Interplay between NLRP3 inflammasome and autophagy. Frontiers in Immunology 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ho, J., J. Yu, S.H. Wong, L. Zhang, X. Liu, W.T. Wong, C.C. Leung, G. Choi, M.H. Wang, T. Gin, M.T. Chan, and W.K. Wu. 2016. Autophagy in sepsis: Degradation into exhaustion? Autophagy 12 (7): 1073–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the Lianyungang City Science and Technology Plan Project (No. JCYJ2309), the Science Foundation of Kangda College of Nanjing Medical University (No. KD2023KYJJ052) and the Priority Academic Program Development of Jiangsu Higher Education Institutions of China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Kaixin Ping: Experiment conduction, Data curation and analysis, Methodology, Writing the original draft. Rongrong Yang: Data curation; Data analysis, Investigation, Methodology. Huizhen Chen: Investigation, Data analysis, Writing the original draft. Shaocheng Xie: Visualization, Validation, Supervision. Yannan Xiang: Software, Validation. Mengxin Li: Visualization, Investigation. Yingzhi Lu: Conceptualization, Visualization, Investigation, Supervision. Jingquan Dong: Conceptualization, Project administration, Funding acquisition, Writing review and editing.

Corresponding authors

Correspondence to Yingzhi Lu or Jingquan Dong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 526 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ping, K., Yang, R., Chen, H. et al. Gypenoside XLIX Activates the Sirt1/Nrf2 Signaling Pathway to Inhibit NLRP3 Inflammasome Activation to Alleviate Septic Acute Lung Injury. Inflammation (2024). https://doi.org/10.1007/s10753-024-02041-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02041-2

KEY WORDS

Navigation