Skip to main content
Log in

Dual Regulation of Nicotine on NLRP3 Inflammasome in Macrophages with the Involvement of Lysosomal Destabilization, ROS and α7nAChR

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Nicotine, the primary alkaloid in tobacco products, has been shown to have immunoregulatory function in at least 20 diseases. The biological mechanism of action of nicotine immunoregulation is complex, resulting in an improvement of some disease states and exacerbation of others. Given the central role of the NLRP3 inflammasome in macrophages among multiple inflammatory diseases, this study examined how nicotine alters NLRP3 inflammasome activation in macrophages. NLRP3 inflammasome activation was examined mechanistically in the context of different nicotine dosages. We show NLRP3 inflammasome activation, apoptosis-associated speck-like protein (ASC) expression, caspase-1 activity and subsequent IL-1β secretion were positively correlated with nicotine in a dose-dependent relationship, and destabilization of lysosomes and ROS production were also involved. At high concentrations of nicotine surpassing 0.25 mM, NLRP3 inflammasome activity declined, along with increased expression of the anti-inflammatory Alpha7 nicotinic acetylcholine receptor (α7nAChR) and the inhibition of TLR4/NF-κB signaling. Consequently, high doses of nicotine also reduced ASC expression, caspase-1 activity and IL-1β secretion in macrophages. Collectively, these results suggest a dual regulatory function of nicotine on NLRP3 inflammasome activation in macrophages, that is involved with the pro-inflammatory effects of lysosomal destabilization and ROS production. We also show nicotine mediates anti-inflammatory effects by activating α7nAChR at high doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data in this study is available from the corresponding author upon reasonable request.

References

  1. World Health Organization. 2023. WHO report on the global tobacco epidemic, 2023: Protect people from tobacco smoke. Number 978-92-4-007716-4. https://www.who.int.

  2. Ma, T., X. Wang, L. Li, B. Sun, Y. Zhu, and T. Xia. 2021. Electronic cigarette aerosols induce oxidative stress-dependent cell death and NF-kappaB mediated acute lung inflammation in mice. Archives of Toxicology 95 (1): 195–205.

    Article  CAS  PubMed  Google Scholar 

  3. Mahmoudzadeh, L., S.M.A. Froushani, M. Ajami, and M. Mahmoudzadeh. 2023. Effect of nicotine on immune system function. Advanced Pharmaceutical Bulletin 13 (1): 69–78.

    CAS  PubMed  Google Scholar 

  4. Piao, W.-H., D. Campagnolo, C. Dayao, R.J. Lukas, J. Wu, and F.-D. Shi. 2009. Nicotine and inflammatory neurological disorders. Acta Pharmacologica Sinica 30 (6): 715–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ko, J.K., and C.-H. Cho. 2005. The diverse actions of nicotine and different extracted fractions from tobacco smoke against hapten-induced colitis in rats. Toxicological Sciences 87 (1): 285–295.

    Article  CAS  PubMed  Google Scholar 

  6. AlQasrawi, D., L.S. Abdelli, and S.A. Naser. 2020. mystery solved: Why smoke extract worsens disease in smokers with Crohn’s Disease and Not Ulcerative Colitis? Gut MAP! Microorganisms 8 (5): 666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Toldo, S., E. Mezzaroma, L.F. Buckley, N. Potere, M. Di Nisio, G. Biondi-Zoccai, B.W. Van Tassell, and A. Abbate. 2022. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacology & Therapeutics 236: 108053.

    Article  CAS  Google Scholar 

  8. Takahashi, M. 2022. NLRP3 inflammasome as a key driver of vascular disease. Cardiovascular Research. 118 (2): 372–385.

    Article  CAS  PubMed  Google Scholar 

  9. Kadomoto, S., K. Izumi, and A. Mizokami. 2021. Macrophage Polarity and Disease Control. International Journal of Molecular Sciences 23 (1): 144.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yunna, C., H. Mengru, W. Lei, and C. Weidong. 2020. Macrophage M1/M2 polarization. European Journal Pharmacology 877: 173090.

    Article  Google Scholar 

  11. Shapouri-Moghaddam, A., S. Mohammadian, H. Vazini, M. Taghadosi, S.A. Esmaeili, F. Mardani, B. Seifi, A. Mohammadi, J.T. Afshari, and A. Sahebkar. 2018. Macrophage plasticity, polarization, and function in health and disease. Journal of Cell Physiology 233 (9): 6425–6440.

    Article  CAS  Google Scholar 

  12. Bono, F., C. Fiorentini, V. Mutti, Z. Tomasoni, G. Sbrini, H. Trebesova, M. Marchi, M. Grilli, and C. Missale. 2023. Central nervous system interaction and crosstalk between nAChRs and other ionotropic and metabotropic neurotransmitter receptors. Pharmacological Research 190: 106711.

    Article  CAS  PubMed  Google Scholar 

  13. Mané-Damas, M., P.C. Molenaar, P. Ulrichts, F. Marcuse, M.H. De Baets, P. Martinez-Martinez, and M. Losen. 2022. Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmunity Reviews 21 (7): 103104.

    Article  PubMed  Google Scholar 

  14. Whitehead, A.K., A.P. Erwin, and X. Yue. 2021. Nicotine and vascular dysfunction. Acta Physiological 231 (4): e13631.

    CAS  Google Scholar 

  15. Xu, S., H. Chen, H. Ni, and Q. Dai. 2021. Targeting HDAC6 attenuates nicotine-induced macrophage pyroptosis via NF-κB/NLRP3 pathway. Atherosclerosis 317: 1–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kelley, N., D. Jeltema, Y. Duan, and Y. He. 2019. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences 20 (13): 3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sayan, M., and B.T. Mossman. 2016. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Particle and Fibre Toxicology 13 (1): 51.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chao, R., Y.-L. Tong, J.-C. Li, Z.-Q. Lu, and Y.-M. Yao. 2017. The protective effect of alpha 7 nicotinic acetylcholine receptor activation on critical illness and its mechanism. International Journal of Biological Sciences 13 (1): 46–56.

    Article  Google Scholar 

  19. Liu, Y., W. Yao, J. Xu, Y. Qiu, F. Cao, S. Li, S. Yang, H. Yang, Z. Wu, and Y. Hou. 2015. The anti-inflammatory effects of acetaminophen and N-acetylcysteine through suppression of the NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Innate Immunity 21 (6): 587–597.

    Article  CAS  PubMed  Google Scholar 

  20. Deets, K.A., and R.E. Vance. 2021. Inflammasomes and adaptive immune responses. Nature Immunology 22 (4): 412–422.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, H., T. Gong, and R. Zhou. 2020. The strategies of targeting the NLRP3 inflammasome to treat inflammatory diseases. Advances in Immunology 145: 55–93.

    Article  CAS  PubMed  Google Scholar 

  22. Fusco, R., R. Siracusa, T. Genovese, S. Cuzzocrea, and R. Di Paola. 2020. Focus on the Role of NLRP3 Inflammasome in Diseases. International Journal of Molecular Sciences 21 (12): 4223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ren, M., M. Zhang, H. Yang, and H. Shi. 2020. Reducing the nicotine content of tobacco by grafting with eggplant. BMC Plant Biology 20 (1): 285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu, X., T. Zong, P. Yang, L. Li, S. Wang, Z. Wang, M. Li, X. Li, Y. Zou, Y. Zhang, L.H. Htet Aung, Y. Yang, and T. Yu. 2021. Nicotine: Regulatory roles and mechanisms in atherosclerosis progression. Food and Chemical Toxicology 151: 112154.

    Article  CAS  PubMed  Google Scholar 

  25. Lian, S., S. Li, J. Zhu, Y. Xia, and Y. Do Jung. 2022. Nicotine stimulates IL-8 expression via ROS/NF-kappaB and ROS/MAPK/AP-1 axis in human gastric cancer cells. Toxicology 466: 153062.

    Article  CAS  PubMed  Google Scholar 

  26. Yao, Y., J. Mao, S. Xu, L. Zhao, L. Long, L. Chen, D. Li, and S. Lu. 2019. Rosmarinic acid inhibits nicotine-induced C-reactive protein generation by inhibiting NLRP3 inflammasome activation in smooth muscle cells. Journal of Cell Physiology 234 (2): 1758–1767.

    Article  CAS  Google Scholar 

  27. Rahman, M., S.I. Sompa, M. Introna, S. Upadhyay, K. Ganguly, and L. Palmberg. 2023. Lipid from electronic cigarette-aerosol both with and without nicotine induced pro-inflammatory macrophage polarization and disrupted phagocytosis. Journal of Inflammation 20 (1): 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, J., S. Park, J.W. Kim, J. Qi, Z. Zhou, C.W. Lim, and B. Kim. 2020. Nicotine attenuates concanavalin A-induced liver injury in mice by regulating the alpha7-nicotinic acetylcholine receptor in Kupffer cells. International Immunopharmacology 78: 106071.

    Article  CAS  PubMed  Google Scholar 

  29. Li, X., W. Li, G. Liu, X. Shen, and Y. Tang. 2015. Association between cigarette smoking and Parkinson’s disease: A meta-analysis. Archives Gerontology Geriatrics 61 (3): 510–516.

    Article  CAS  Google Scholar 

  30. Hoskin, J.L., Y. Al-Hasan, and M.N. Sabbagh. 2019. Nicotinic acetylcholine receptor agonists for the treatment of alzheimer’s dementia: An update. Nicotine & Tobacco Research 21 (3): 370–376.

    Article  Google Scholar 

  31. Alkhattabi, N., I. Todd, O. Negm, P.J. Tighe, and L.C. Fairclough. 2018. Tobacco smoke and nicotine suppress expression of activating signaling molecules in human dendritic cells. Toxicology Letters 299: 40–46.

    Article  CAS  PubMed  Google Scholar 

  32. Peng, L., L. Wen, Q.F. Shi, F. Gao, B. Huang, J. Meng, C.P. Hu, and C.M. Wang. 2020. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-kappaB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Disease 11 (11): 978.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang, B., D. Wang, Y. Hu, W. Li, F. Liu, X. Zhu, X. Li, H. Zhang, H. Bai, Q. Yang, X. Yang, J. Ben, and Q. Chen. 2022. Serum amyloid A1 exacerbates hepatic steatosis via TLR4-mediated NF-kappaB signaling pathway. Molecular Metablism 59: 101462.

    Article  CAS  Google Scholar 

  34. Hoshino, Y., T. Mio, S. Nagai, H. Miki, and T. Izumi. 2001. Cytotoxic effects of cigarette smoke extract on an alveolar type II cell-derived cell line. American Journal Physiology Lung Cell Molecular Physiology 281 (2): 509.

    Article  Google Scholar 

  35. Clunes, L.A., B. Arlene, A. Neil, and T. Robert. 2008. In vivo versus in vitro airway surface liquid nicotine levels following cigarette smoke exposure. Journal of Analytical Toxicology 3: 201–207.

    Article  Google Scholar 

  36. Herman, M., and R. Tarran. 2020. E-cigarettes, nicotine, the lung and the brain: Multi-level cascading pathophysiology. The Journal of Physiology 598 (22): 5063–5071.

    Article  CAS  PubMed  Google Scholar 

  37. Xu, J., and G. Nunez. 2023. The NLRP3 inflammasome: Activation and regulation. Trends Biochemical Sciences 48 (4): 331–344.

    Article  CAS  Google Scholar 

  38. Rumora, L., A. Somborac-Bačura, I. Hlapčić, A. Hulina-Tomašković, and M.G. Rajković. 2020. Cigarette smoke and extracellular Hsp70 induce secretion of ATP and differential activation of NLRP3 inflammasome in monocytic and bronchial epithelial cells. Cytokine 135: 155220.

    Article  CAS  PubMed  Google Scholar 

  39. Knotigova, P.T., J. Masek, F. Hubatka, J. Kotoucek, and P. Kulich. 2019. Application of advanced microscopic methods to study the interaction of carboxylated fluorescent nanodiamonds with membrane structures in THP-1 cells: activation of inflammasome NLRP3 as the result of lysosome destabilization. Molecular Pharmaceutics. 16 (8): 3441–3451.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y., Y. Chen, Y. Zhang, P.-L. Li, and X. Li. 2019. Contribution of cathepsin B-dependent Nlrp3 inflammasome activation to nicotine-induced endothelial barrier dysfunction. European Journal Pharmacology 865: 172795.

    Article  CAS  Google Scholar 

  41. Campden, R.I., and Y. Zhang. 2019. The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation. Archives of Biochemistry Biophysics. 670: 32–42.

    Article  CAS  PubMed  Google Scholar 

  42. Sho, T., and J.J.B. Xu. 2019. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnology and Applied Biochemistry 66 (1): 4–13.

    Article  CAS  PubMed  Google Scholar 

  43. Aridgides, D.S., D.L. Mellinger, D.A. Armstrong, H.F. Hazlett, J.A. Dessaint, T.H. Hampton, G.T. Atkins, J.L. Carroll, and A.J.S.R. Ashare. 2019. Functional and metabolic impairment in cigarette smoke-exposed macrophages is tied to oxidative stress. Scientific Reports 9 (1): 9624.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu, X., H. Zhang, W. Qi, Y. Zhang, J. Li, Z. Li, Y. Lin, X. Bai, X. Liu, X. Chen, H. Yang, C. Xu, Y. Zhang, and B. Yang. 2018. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Disease 9 (2): 171.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huang, Q., A. Ye, P. Li, J. Bao, R.E. Garfield, and H. Liu. 2022. Nicotine ameliorates inflammatory mediators in RU486 induced preterm labor model through activating cholinergic anti-inflammatory pathway. Cytokine 160: 156054.

    Article  CAS  PubMed  Google Scholar 

  46. Mosser, D.M., K. Hamidzadeh, and R. Goncalves. 2021. Macrophages and the maintenance of homeostasis. Cell & Molecular Immunology 18 (3): 579–587.

    Article  CAS  Google Scholar 

  47. Fu, H., Q.R. Shen, Y. Zhao, et al. 2020. Activating α7nAChR ameliorates abdominal aortic aneurysm through inhibiting pyroptosis mediated by NLRP3 inflammasome. Acta Pharmacologica Sinica 43 (10): 2585–2595.

    Article  Google Scholar 

  48. Tan, Y., Z. Chu, H. Shan, D. Zhangsun, X. Zhu, and S. Luo. 2022. Inflammation regulation via an agonist and antagonists of α7 nicotinic acetylcholine receptors in RAW264. 7 macrophages. Marine Drugs 20 (3): 200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Siniavin, A.E., M.A. Streltsova, D.S. Kudryavtsev, I.V. Shelukhina, Y.N. Utkin, and V.I. Tsetlin. 2020. Activation of α7 nicotinic acetylcholine receptor upregulates HLA-DR and macrophage receptors: Potential role in adaptive immunity and in preventing immunosuppression. Biomolecules 10 (4): 507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to Professor Cong-yi Wang (The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology) for his revision of the English in this paper.

Funding

This research was financially supported by the Key Laboratory of Tobacco Biological Effects (Grant NO.110202102011)

Author information

Authors and Affiliations

Authors

Contributions

Xiaqing Wu, Yushan Tian, and Hongjuan Wang designed experiments. Xiaqing Wu and Yushan Tian carried out experiments. Xiaqing Wu performed the data collection and analysis. Xiaqing Wu drafted this manuscript. Huan Chen, Hongwei Hou, and Qingyuan Hu performed the language modification. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Hongwei Hou or Qingyuan Hu.

Ethics declarations

Competing Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 276 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Tian, Y., Wang, H. et al. Dual Regulation of Nicotine on NLRP3 Inflammasome in Macrophages with the Involvement of Lysosomal Destabilization, ROS and α7nAChR. Inflammation (2024). https://doi.org/10.1007/s10753-024-02036-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02036-z

KEY WORDS

Navigation