Skip to main content

Advertisement

Log in

AMPK/MTOR/TP53 Signaling Pathway Regulation by Calcitonin Gene-Related Peptide Reduces Oxygen-Induced Lung Damage in Neonatal Rats through Autophagy Promotion

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Our previous studies indicated that calcitonin gene-related peptide (CGRP) alleviates hyperoxia-induced lung injury and suggested the possible involvement of autophagy in this process. Herein, we aimed to further explore the potential involvement of tumor protein p53 (TP53) and autophagy in the mode of action of CGRP against hyperoxia-induced lung injury in vitro and in vivo. The study conducted tests on type II alveolar epithelial cells (AECII) and rats that were subjected to hyperoxia treatment or combined treatment of hyperoxia with CGRP, CGRP inhibitor, rapamycin (an autophagy agonist), 3-methyladenine (3-MA, an autophagy inhibitor), TP53 silencing/inhibitor (pifithrin-α), or expression vector/activator (PRIMA-1 (2,2-bis(hydroxymethyl)-3-quinuclidinone)) and their corresponding controls. We found that oxidative stress, apoptosis, and autophagy were all increased by hyperoxia treatment in vitro. However, treating AECII cells with CGRP reversed hyperoxia-induced oxidative stress and apoptosis but further promoted autophagy. In addition, the combined treatment with rapamycin or TP53 silencing with CGRP promoted the effect of CGRP, while contrary results were obtained with combined therapy with 3-MA or TP53 overexpression. In vivo, the number of hyperoxia-induced autophagosomes was promoted in the lung tissue of neonatal rats. Furthermore, hyperoxia increased the expression levels of AMP-activated protein kinase (AMPK) alpha 1 (also known as protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1)) but inhibited TP53 and mechanistic target of rapamycin (MTOR); these expression trends were regulated by CGRP treatment. In conclusion, we showed that CGRP can attenuate hyperoxia-induced lung injury in neonatal rats by enhancing autophagy and regulating the TP53/AMPK/MTOR crosstalk axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Onland, W., F. Cools, A. Kroon, et al. 2019. Effect of hydrocortisone therapy initiated 7 to 14 days after birth on mortality or bronchopulmonary dysplasia among very preterm infants receiving mechanical ventilation: A randomized clinical trial. JAMA 321: 354–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lassus, P., I. Nupponen, A. Kari, M. Pohjavuori, and S. Andersson. 2002. Early postnatal dexamethasone decreases hepatocyte growth factor in tracheal aspirate fluid from premature infants. Pediatrics 110: 768–771.

    Article  PubMed  Google Scholar 

  3. Dai, Y., B. Yu, D. Ai, et al. 2020. Mitochondrial fission-mediated lung development in newborn rats with hyperoxia-induced bronchopulmonary dysplasia with pulmonary hypertension. Frontiers in Pediatrics 8: 619853.

    Article  PubMed  Google Scholar 

  4. Seedorf, G., C. Kim, B. Wallace, et al. 2020. rhIGF-1/BP3 preserves lung growth and prevents pulmonary hypertension in experimental bronchopulmonary dysplasia. American Journal of Respiratory and Critical Care Medicine 201: 1120–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thiess, T., T. Lauer, A. Woesler, et al. 2021. Correlation of early nutritional supply and development of bronchopulmonary dysplasia in preterm infants <1,000 g. Frontiers in Pediatrics 9: 741365.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pierce, G.F., J.E. Tarpley, R.M. Allman, et al. 1994. Tissue repair processes in healing chronic pressure ulcers treated with recombinant platelet-derived growth factor BB. American Journal of Pathology 145: 1399–1410.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shyamsundar, M., D.F. McAuley, R.J. Ingram, et al. 2014. Keratinocyte growth factor promotes epithelial survival and resolution in a human model of lung injury. American Journal of Respiratory and Critical Care Medicine 189: 1520–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sørensen, L.T., B. Toft, J. Rygaard, S. Ladelund, B. Teisner, and F. Gottrup. 2010. Smoking attenuates wound inflammation and proliferation while smoking cessation restores inflammation but not proliferation. Wound Repair and Regeneration 18: 186–192.

    Article  PubMed  Google Scholar 

  9. Weihs, A.M., C. Fuchs, A.H. Teuschl, et al. 2014. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation. Journal of Biological Chemistry 289: 27090–27104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patrascu, J.M., J.P. Krüger, H.G. Böss, et al. 2013. Polyglycolic acid-hyaluronan scaffolds loaded with bone marrow-derived mesenchymal stem cells show chondrogenic differentiation in vitro and cartilage repair in the rabbit model. Journal of Biomedical Materials Research Part B, Applied Biomaterials 101: 1310–1320.

    Article  PubMed  Google Scholar 

  11. Abdelwahab, E.M.M., J. Rapp, D. Feller, et al. 2019. Wnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. Respiratory Research 20: 204.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yanagihara, T., Q. Zhou, K. Tsubouchi, et al. 2023. Intrinsic BMP inhibitor Gremlin regulates alveolar epithelial type II cell proliferation and differentiation. Biochemical and Biophysical Research Communications 656: 53–62.

    Article  CAS  PubMed  Google Scholar 

  13. Zeng, L., X.T. Yang, H.S. Li, et al. 2016. The cellular kinetics of lung alveolar epithelial cells and its relationship with lung tissue repair after acute lung injury. Respiratory Research 17: 164.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Connat, J.L., V. Schnüriger, R. Zanone, et al. 2001. The neuropeptide calcitonin gene-related peptide differently modulates proliferation and differentiation of smooth muscle cells in culture depending on the cell type. Regulatory Peptides 101: 169–178.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, W., L. Jia, T. Wang, W. Sun, S. Wu, and X. Wang. 2005. Endogenous calcitonin gene-related peptide protects human alveolar epithelial cells through protein kinase Cepsilon and heat shock protein. Journal of Biological Chemistry 280: 20325–20330.

    Article  CAS  PubMed  Google Scholar 

  16. Li, W., L. Hou, Z. Hua, and X. Wang. 2004. Interleukin-1beta induces beta-calcitonin gene-related peptide secretion in human type II alveolar epithelial cells. The FASEB Journal 18: 1603–1605.

    Article  CAS  PubMed  Google Scholar 

  17. Li, W., T. Wang, C. Ma, T. Xiong, Y. Zhu, and X. Wang. 2006. Calcitonin gene-related peptide inhibits interleukin-1beta-induced endogenous monocyte chemoattractant protein-1 secretion in type II alveolar epithelial cells. American Journal of Physiology: Cell Physiology 291: C456-465.

    Article  CAS  PubMed  Google Scholar 

  18. Li, W., S. Zheng, C. Tang, Y. Zhu, and X. Wang. 2007. JNK-AP-1 pathway involved in interleukin-1beta-induced calcitonin gene-related peptide secretion in human type II alveolar epithelial cells. Peptides 28: 1252–1259.

    Article  CAS  PubMed  Google Scholar 

  19. Li, W.J., and T.K. Wang. 2006. Calcitonin gene-related peptide inhibits interleukin-1beta-induced interleukin-8 secretion in human type II alveolar epithelial cells. Acta Pharmacologica Sinica 27: 1340–1345.

    Article  CAS  PubMed  Google Scholar 

  20. Okumura, M., H. Kai, K. Arimori, et al. 2000. Adrenomedullin increases phosphatidylcholine secretion in rat type II pneumocytes. European Journal of Pharmacology 403: 189–194.

    Article  CAS  PubMed  Google Scholar 

  21. Huang, B., H. Fu, M. Yang, F. Fang, F. Kuang, and F. Xu. 2009. Neuropeptide substance P attenuates hyperoxia-induced oxidative stress injury in type II alveolar epithelial cells via suppressing the activation of JNK pathway. Lung 187: 421–426.

    Article  CAS  PubMed  Google Scholar 

  22. Deng, J., S.H. Wang, X.M. Zheng, and Z.M. Tang. 2022. Calcitonin gene-related peptide attenuates hyperoxia-induced oxidative damage in alveolar epithelial type II cells through regulating viability and transdifferentiation. Inflammation 45: 863–875.

    Article  CAS  PubMed  Google Scholar 

  23. Ma, Z., J. Bai, C. Jiang, et al. 2023. Tegument protein UL21 of alpha-herpesvirus inhibits the innate immunity by triggering CGAS degradation through TOLLIP-mediated selective autophagy. Autophagy 19: 1512–1532.

    Article  CAS  PubMed  Google Scholar 

  24. Polletta, L., E. Vernucci, I. Carnevale, et al. 2015. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 11: 253–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, H., H.A. Ge, G.B. Wu, B. Cheng, Y. Lu, and C. Jiang. 2016. Autophagy prevents oxidative stress-induced loss of self-renewal capacity and stemness in human tendon stem cells by reducing ROS accumulation. Cellular Physiology and Biochemistry 39: 2227–2238.

    Article  CAS  PubMed  Google Scholar 

  26. Hong, Y., Y. Zhou, L. Shen, et al. 2021. Exposure to DEHP induces testis toxicity and injury through the ROS/mTOR/NLRP3 signaling pathway in immature rats. Ecotoxicology and Environmental Safety 227: 112889.

    Article  CAS  PubMed  Google Scholar 

  27. He, Y., H. She, T. Zhang, et al. 2018. p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. The Journal of Cell Biology 217: 315–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, B., X. Deng, Q. Jiang, et al. 2020. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomedicine & Pharmacotherapy 125: 109895.

    Article  CAS  Google Scholar 

  29. Sui, X., N. Kong, L. Ye, et al. 2014. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Letters 344: 174–179.

    Article  CAS  PubMed  Google Scholar 

  30. Wei, T., X. Xiaojun, and C. Peilong. 2020. Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways. Biomedicine & Pharmacotherapy 121: 109139.

    Article  CAS  Google Scholar 

  31. Zhang, Q., X. Wang, S. Cao, et al. 2020. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomedicine & Pharmacotherapy 128: 110245.

    Article  CAS  Google Scholar 

  32. Huang, H., M. Wang, Z. Guo, et al. 2021. Rutaecarpine alleviates acute pancreatitis in mice and AR42J cells by suppressing the MAPK and NF-κB signaling pathways via calcitonin gene-related peptide. Phytotherapy Research: PTR 35: 6472–6485.

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y., G. Liu, H. Li, Y. Xu, H. Zhang, and Z. Liu. 2013. Capsaicin-induced activation of ERK1/2 and its involvement in GAP-43 expression and CGRP depletion in organotypically cultured DRG neurons. Cellular and Molecular Neurobiology 33: 433–441.

    Article  PubMed  Google Scholar 

  34. Yao, G., Y.H. Man, A.R. Li, et al. 2020. NO up-regulates migraine-related CGRP via activation of an Akt/GSK-3β/NF-κB signaling cascade in trigeminal ganglion neurons. Aging (Albany NY) 12: 6370–6384.

    Article  CAS  PubMed  Google Scholar 

  35. Machado, J., L.H. Manfredi, W.A. Silveira, et al. 2016. Calcitonin gene-related peptide inhibits autophagic-lysosomal proteolysis through cAMP/PKA signaling in rat skeletal muscles. International Journal of Biochemistry & Cell Biology 72: 40–50.

    Article  CAS  Google Scholar 

  36. Machado, J., W.A. Silveira, D.A. Gonçalves, et al. 2019. α-Calcitonin gene-related peptide inhibits autophagy and calpain systems and maintains the stability of neuromuscular junction in denervated muscles. Molecular Metabolism 28: 91–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schavinski, A.Z., J. Machado, H.J.N. Morgan, et al. 2021. Calcitonin gene-related peptide exerts inhibitory effects on autophagy in the heart of mice. Peptides 146: 170677.

    Article  CAS  PubMed  Google Scholar 

  38. Tian, J., L. Yang, P. Wang, L. Yang, and Z. Fan. 2020. Exogenous CGRP regulates apoptosis and autophagy to alleviate traumatic brain injury through Akt/mTOR signalling pathway. Neurochemical Research 45: 2926–2938.

    Article  CAS  PubMed  Google Scholar 

  39. O’Reilly, M.A., R.J. Staversky, B.R. Stripp, and J.N. Finkelstein. 1998. Exposure to hyperoxia induces p53 expression in mouse lung epithelium. American Journal of Respiratory Cell and Molecular Biology 18: 43–50.

    Article  CAS  PubMed  Google Scholar 

  40. Geisinger, J.M., and T. Stearns. 2020. CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Nucleic Acids Research 48: 9067–9081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rajedadram, A., K.Y. Pin, S.K. Ling, S.W. Yan, and M.L. Looi. 2021. Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells. Journal of Zhejiang University Science B 22: 112–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Uxa, S., S.H. Bernhart, C.F.S. Mages, et al. 2019. DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Research 47: 9087–9103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie, H., K. Ma, K. Zhang, et al. 2021. Cell-cycle arrest and senescence in TP53-wild type renal carcinoma by enhancer RNA-P53-bound enhancer regions 2 (p53BER2) in a p53-dependent pathway. Cell Death & Disease 12: 1.

    Article  CAS  Google Scholar 

  44. Borchiellini, D., M.C. Etienne-Grimaldi, R.J. Bensadoun, et al. 2017. Candidate apoptotic and DNA repair gene approach confirms involvement of ERCC1, ERCC5, TP53 and MDM2 in radiation-induced toxicity in head and neck cancer. Oral Oncology 67: 70–76.

    Article  CAS  PubMed  Google Scholar 

  45. Dave, B., R.R. Eason, Y. Geng, Y. Su, T.M. Badger, and R.C. Simmen. 2006. Tp53-associated growth arrest and DNA damage repair gene expression is attenuated in mammary epithelial cells of rats fed whey proteins. Journal of Nutrition 136: 1156–1160.

    Article  CAS  PubMed  Google Scholar 

  46. Jackson, T.R., K. Salmina, A. Huna, et al. 2013. DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells. Cell Cycle 12: 430–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kannappan, R., S. Mattapally, P.A. Wagle, and J. Zhang. 2018. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells. American Journal of Physiology Heart and Circulatory Physiology 315: H512-h521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park, S.Y., H.K. Choi, S.H. Jo, et al. 2015. YAF2 promotes TP53-mediated genotoxic stress response via stabilization of PDCD5. Biochimica et Biophysica Acta 1853: 1060–1072.

    Article  CAS  PubMed  Google Scholar 

  49. Chen, C.C., C.W. Hsia, C.W. Ho, et al. 2017. Hypoxia and hyperoxia differentially control proliferation of rat neural crest stem cells via distinct regulatory pathways of the HIF1α-CXCR4 and TP53-TPM1 proteins. Developmental Dynamics 246: 162–185.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, N., Q. Zhang, L. Luo, B. Ning, and Y. Fang. 2018. β-asarone inhibited cell growth and promoted autophagy via P53/Bcl-2/Bclin-1 and P53/AMPK/mTOR pathways in Human Glioma U251 cells. Journal of Cellular Physiology 233: 2434–2443.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, Y., X. Jiang, Z. Ding, and J. Ming. 2022. Interleukin 7 inhibit autophagy via P53 regulated AMPK/mTOR signaling pathway in non-small cell lung cancer. Scientific Reports 12: 11208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu, J., H. Ao, M. Liu, K. Cao, and J. Ma. 2021. UBE2T promotes autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma. Journal of Translational Medicine 19: 374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fu, H., T. Zhang, R. Huang, et al. 2017. Calcitonin gene-related peptide protects type II alveolar epithelial cells from hyperoxia-induced DNA damage and cell death. Experimental and Therapeutic Medicine 13: 1279–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dang, H., L. Yang, S. Wang, F. Fang, and F. Xu. 2012. Calcitonin gene-related peptide ameliorates hyperoxia-induced lung injury in neonatal rats. Tohoku Journal of Experimental Medicine 227: 129–138.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Q., X. Ran, Y. He, Q. Ai, and Y. Shi. 2020. Acetate downregulates the activation of NLRP3 inflammasomes and attenuates lung injury in neonatal mice with bronchopulmonary dysplasia. Frontiers in Pediatrics 8: 595157.

    Article  PubMed  Google Scholar 

  56. Dembiński, A., Z. Warzecha, P. Ceranowicz, et al. 2003. Stimulation of sensory nerves and CGRP attenuate pancreatic damage in ischemia/reperfusion induced pancreatitis. Medical Science Monitor 9: Br418–425

  57. Edbrooke, M.R., D. Parker, J.H. McVey, et al. 1985. Expression of the human calcitonin/CGRP gene in lung and thyroid carcinoma. The EMBO Journal 4: 715–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hong-Min, F., H. Chun-Rong, Z. Rui, S. Li-Na, W. Ya-Jun, and L. Li. 2016. CGRP 8–37 enhances lipopolysaccharide-induced acute lung injury and regulating aquaporin 1 and 5 expressions in rats. Journal of Physiology and Biochemistry 73: 381–386.

    Article  PubMed  Google Scholar 

  59. Hu, J., W. Lin, C. Zhao, and J. Chen. 2018. The relationship between trypsin/calcitonin gene related peptide (CGRP) in serum and acute pancreatitis (AP). Clinical Laboratory 64: 93–97.

    Article  PubMed  Google Scholar 

  60. Walsh, D.A., and D.F. McWilliams. 2019. CGRP and painful pathologies other than headache. Handbook of Experimental Pharmacology 255: 141–167.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, F., Y. Deng, J. Wang, et al. 2021. The PLGA nanoparticles for sustainable release of CGRP to ameliorate the inflammatory and vascular disorders in the lung of CGRP-deficient rats. Drug Delivery 28: 865–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hagner, S., R. Haberberger, W. Kummer, et al. 2001. Immunohistochemical detection of calcitonin gene-related peptide receptor (CGRPR)-1 in the endothelium of human coronary artery and bronchial blood vessels. Neuropeptides 35: 58–64.

    Article  CAS  PubMed  Google Scholar 

  63. Ren, Y.H., X.Q. Qin, C.X. Guan, Z.Q. Luo, C.Q. Zhang, and X.H. Sun. 2004. Temporal and spatial distribution of VIP, CGRP and their receptors in the development of airway hyperresponsiveness in the lungs. Sheng Li Xue Bao 56: 137–146.

    CAS  PubMed  Google Scholar 

  64. Clementi, G., A. Caruso, V.M. Cutuli, et al. 1995. Anti-inflammatory activity of amylin and CGRP in different experimental models of inflammation. Life Science 57: Pl193–197.

  65. Dang, H.X., J. Li, C. Liu, et al. 2017. CGRP attenuates hyperoxia-induced oxidative stress-related injury to alveolar epithelial type II cells via the activation of the Sonic hedgehog pathway. International Journal of Molecular Medicine 40: 209–216.

    Article  CAS  PubMed  Google Scholar 

  66. Wu, J., S. Liu, Z. Wang, S. Ma, H. Meng, and J. Hu. 2018. Calcitonin gene-related peptide promotes proliferation and inhibits apoptosis in endothelial progenitor cells via inhibiting MAPK signaling. Proteome Science 16: 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ma, Y.X., Z. Guo, and T. Sun. 2013. CGRP inhibits norepinephrine induced apoptosis with restoration of Bcl-2/Bax in cultured cardiomyocytes of rat. Neuroscience Letters 549: 130–134.

    Article  CAS  PubMed  Google Scholar 

  68. Hu, F., J. Yang, X. Chen, et al. 2020. LncRNA 1700020I14Rik/miR-297a/CGRP axis suppresses myocardial cell apoptosis in myocardial ischemia-reperfusion injury. Molecular Immunology 122: 54–61.

    Article  CAS  PubMed  Google Scholar 

  69. Liu, Y., S. Zhang, J. Xue, et al. 2019. CGRP reduces apoptosis of DRG cells induced by high-glucose oxidative stress injury through PI3K/AKT induction of heme oxygenase-1 and Nrf-2 expression. Oxidative Medicine and Cellular Longevity 2019: 2053149.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sureshbabu, A., M. Syed, P. Das, et al. 2016. Inhibition of regulatory-associated protein of mechanistic target of rapamycin prevents hyperoxia-induced lung injury by enhancing autophagy and reducing apoptosis in neonatal mice. American Journal of Respiratory Cell and Molecular Biology 55: 722–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yeganeh, B., J. Lee, C. Bilodeau, et al. 2019. Acid sphingomyelinase inhibition attenuates cell death in mechanically ventilated newborn rat lung. American Journal of Respiratory and Critical Care Medicine 199: 760–772.

    Article  CAS  PubMed  Google Scholar 

  72. Xie, X., L. Le, Y. Fan, L. Lv, and J. Zhang. 2012. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition. Autophagy 8: 1071–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goiran, T., E. Duplan, L. Rouland, et al. 2018. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death and Differentiation 25: 873–884.

    PubMed  PubMed Central  Google Scholar 

  74. Alers, S., A.S. Löffler, S. Wesselborg, and B. Stork. 2012. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks. Molecular and Cellular Biology. 32: 2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Holczer, M., B. Hajdú, T. Lőrincz, A. Szarka, G. Bánhegyi, and O. Kapuy. 2019. A double negative feedback loop between mTORC1 and AMPK kinases guarantees precise autophagy induction upon cellular stress. International Journal of Molecular Sciences. 20(22): 5543. https://doi.org/10.3390/ijms20225543.

Download references

Funding

This work was supported by (1) the Natural Science Foundation of Shenzhen Science and Technology Innovation Commission in 2020 [grant number JCYJ20190813141207091], (2) the Natural Science Foundation of Shenzhen Science and Technology Innovation Commission in 2021 [grant number JCYJ20210324111806016], (3) the Natural Science Foundation of Shenzhen Science and Technology Innovation Commission in 2022 [grant number JCYJ20220530142015035], (4) Futian Healthcare Research Project, Shenzhen, 2023 [grant number FTWS2023063]. .

Author information

Authors and Affiliations

Authors

Contributions

S. W.: investigation; data curation; writing—original draft; supervision; funding acquisition. Z. Z.: validation, investigation, formal analysis. Z. T.: resources, validation. J. D.: resources.

Corresponding author

Correspondence to Shaohua Wang.

Ethics declarations

Ethics Approval

This experiment obtained approval from the Medical Ethics Committee of Women and Children Health Institute of Futian (Approval date: 2019/7/30). The committee carefully reviewed the research protocol, ensuring compliance with ethical guidelines and regulations. The study was performed in conformity with the principles outlined in the Basel Declaration on Animal Research Ethics.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zou, Z., Tang, Z. et al. AMPK/MTOR/TP53 Signaling Pathway Regulation by Calcitonin Gene-Related Peptide Reduces Oxygen-Induced Lung Damage in Neonatal Rats through Autophagy Promotion. Inflammation (2024). https://doi.org/10.1007/s10753-023-01963-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-023-01963-7

KEY WORDS

Navigation