Skip to main content

Advertisement

Log in

E. coli LPS/TLR4/NF-κB Signaling Pathway Regulates Th17/Treg Balance Mediating Inflammatory Responses in Oral Lichen Planus

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Oral lichen planus (OLP) is a chronic inflammatory autoimmune disease mediated by T cells. The imbalance of microflora has potential impacts on the onset and development of OLP, but the mechanism is still unclear. Here, we investigated the effects of Escherichia coli (E. coli) lipopolysaccharide (LPS) simulating the microbial enrichment state of OLP on T cell immune functions in vitro. Effect of E. coli LPS on the viability of T cell using CCK8 assay. After E. coli LPS pretreatment, the expression of the toll-like receptor 4 (TLR4), nuclear factor-kappa B p65 (NF-κB p65), cytokines, retinoic acid-related orphan receptor γt (RORγt), and forkhead box p3 (Foxp3) in the peripheral blood of OLP patients and normal controls (NC) were assessed using quantitative RT-PCR (qRT-PCR), western blot, and enzyme-linked immunosorbent assay (ELISA). Finally, Th17 and Treg cells were detected by flow cytometry. We found that the TLR4/NF-κB pathway was activated and the expression of interleukin (IL)-6 and IL-17 was increased in both groups after E. coli LPS stimulation. CC chemokine ligand (CCL)20 and CC chemokine receptor (CCR)4 expression was increased in OLP after E. coli LPS treatment, while no difference was found in CCR6 and CCL17 expression of both groups. Moreover, E. coli LPS treatment enhanced the proportion of Th17 cells, Th17/Treg ratio, and RORγt/Foxp3 ratio in OLP. In conclusion, E. coli LPS regulated Th17/Treg balance to mediate the inflammatory responses of OLP through the TLR4/NF-κB pathway in vitro, indicating that oral microbiota dysbiosis affected the chronic inflammatory state of OLP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

DATA AVAILABILITY

The datasets that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gonzalez-Moles, M.A., S. Warnakulasuriya, I. Gonzalez-Ruiz, L. Gonzalez-Ruiz, A. Ayen, D. Lenouvel, I. Ruiz-Avila, and P. Ramos-Garcia. 2021. Worldwide prevalence of oral lichen planus: A systematic review and meta-analysis. Oral Diseases 27 (4): 813–828. https://doi.org/10.1111/odi.13323.

    Article  PubMed  Google Scholar 

  2. Shiva, A., A. Zamanian, S. Arab, and M. Boloki. 2018. Immunohistochemical study of p53 expression in patients with erosive and non-erosive oral lichen planus. Journal of Dentistry (Shiraz) 19(2):118–123. https://www.ncbi.nlm.nih.gov/pubmed/29854885.

  3. Zhu, Z.D., X.M. Ren, M.M. Zhou, Q.M. Chen, H. Hua, and C.L. Li. 2022. Salivary cytokine profile in patients with oral lichen planus. Journal of Dental Sciences 17 (1): 100–105. https://doi.org/10.1016/j.jds.2021.06.013.

    Article  PubMed  Google Scholar 

  4. Ruff, W.E., T.M. Greiling, and M.A. Kriegel. 2020. Host-microbiota interactions in immune-mediated diseases. Nature Reviews Microbiology 18 (9): 521–538. https://doi.org/10.1038/s41579-020-0367-2.

    Article  CAS  PubMed  Google Scholar 

  5. Rusthen, S., A.K. Kristoffersen, A. Young, H.K. Galtung, B.E. Petrovski, O. Palm, M. Enersen, and J.L. Jensen. 2019. Dysbiotic salivary microbiota in dry mouth and primary Sjogren’s syndrome patients. PLoS One 14(6):e0218319. https://doi.org/10.1371/journal.pone.0218319.

  6. Hamamoto, Y., K. Ouhara, S. Munenaga, M. Shoji, T. Ozawa, J. Hisatsune, I. Kado, M. Kajiya, S. Matsuda, T. Kawai, N. Mizuno, T. Fujita, S. Hirata, K. Tanimoto, K. Nakayama, H. Kishi, E. Sugiyama, and H. Kurihara. 2020. Effect of Porphyromonas gingivalis infection on gut dysbiosis and resultant arthritis exacerbation in mouse model. Arthritis Research & Therapy 22 (1): 249. https://doi.org/10.1186/s13075-020-02348-z.

    Article  CAS  Google Scholar 

  7. De Paiva, C.S., D.B. Jones, M.E. Stern, F. Bian, Q.L. Moore, S. Corbiere, C.F. Streckfus, D.S. Hutchinson, N.J. Ajami, J.F. Petrosino, and S.C. Pflugfelder. 2016. Altered mucosal microbiome diversity and disease severity in sjogren syndrome. Science and Reports 6: 23561. https://doi.org/10.1038/srep23561.

    Article  CAS  Google Scholar 

  8. Wang, X., Z. Zhao, N. Tang, Y. Zhao, J. Xu, L. Li, L. Qian, J. Zhang, and Y. Fan. 2020. Microbial community analysis of saliva and biopsies in patients with oral lichen planus. Frontiers in Microbiology 11: 629. https://doi.org/10.3389/fmicb.2020.00629.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Baek, K., J. Lee, A. Lee, J. Lee, H.J. Yoon, H.K. Park, J. Chun, and Y. Choi. 2020. Characterization of intratissue bacterial communities and isolation of Escherichia coli from oral lichen planus lesions. Science and Reports 10 (1): 3495. https://doi.org/10.1038/s41598-020-60449-w.

    Article  CAS  Google Scholar 

  10. Lu, Y.C., W.C. Yeh, and P.S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42 (2): 145–151. https://doi.org/10.1016/j.cyto.2008.01.006.

    Article  CAS  PubMed  Google Scholar 

  11. Rogier, R., T.H.A. Ederveen, J. Boekhorst, H. Wopereis, J.U. Scher, J. Manasson, S.J.C.M. Frambach, J. Knol, J. Garssen, P.M. Van Der Kraan, M.I. Koenders, W.B. Van Den Berg, S.a.F.T. Van Hijum, and S. Abdollahi-Roodsaz. 2017. Aberrant intestinal microbiota due to IL-1 receptor antagonist deficiency promotes IL-17- and TLR4-dependent arthritis. Microbiome 5(1). https://doi.org/10.1186/s40168-017-0278-2.

  12. Qu, Y., X. Li, F. Xu, S. Zhao, X. Wu, Y. Wang, and J. Xie. 2021. Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-NF-kappaB axis. Frontiers in Immunology 12: 679897. https://doi.org/10.3389/fimmu.2021.679897.

  13. Kang, G.D., and D.H. Kim. 2016. Poncirin and its metabolite ponciretin attenuate colitis in mice by inhibiting LPS binding on TLR4 of macrophages and correcting Th17/Treg imbalance. Journal of Ethnopharmacology 189: 175–185. https://doi.org/10.1016/j.jep.2016.05.044.

    Article  CAS  PubMed  Google Scholar 

  14. Janardhanam, S.B., S. Prakasam, V.T. Swaminathan, K.N. Kodumudi, S.L. Zunt, and M. Srinivasan. 2012. Differential expression of TLR-2 and TLR-4 in the epithelial cells in oral lichen planus. Archives of Oral Biology 57 (5): 495–502. https://doi.org/10.1016/j.archoralbio.2011.10.013.

    Article  CAS  PubMed  Google Scholar 

  15. Zeng, Q., X. Yang, X. Chen, J. Xia, B. Cheng, and X. Tao. 2018. Porphyromonas gingivalis lipopolysaccharide induces over production of CC chemokine ligand 2 via toll-like receptor-4 in oral lichen planus. Journal of Oral Pathology and Medicine 47 (2): 166–172. https://doi.org/10.1111/jop.12655.

    Article  CAS  PubMed  Google Scholar 

  16. Ichimura, M., K. Hiratsuka, N. Ogura, T. Utsunomiya, H. Sakamaki, T. Kondoh, Y. Abiko, S. Otake, and M. Yamamoto. 2006. Expression profile of chemokines and chemokine receptors in epithelial cell layers of oral lichen planus. Journal of Oral Pathology and Medicine 35 (3): 167–174. https://doi.org/10.1111/j.1600-0714.2006.00402.x.

    Article  CAS  PubMed  Google Scholar 

  17. Shan, J., C. Shen, J. Fang, S. Li, and Y. Fan. 2020. Potential roles of the CCL17-CCR4 axis in immunopathogenesis of oral lichen planus. Journal of Oral Pathology and Medicine 49 (4): 328–334. https://doi.org/10.1111/jop.12928.

    Article  CAS  PubMed  Google Scholar 

  18. Jia, P.R., Y.Y. Huang, Y. Wang, and Y. Cai. 2018. Correlations between the T helper cell 17/regulatory T cells balance in peripheral blood of patients with oral lichen planus and clinical characteristics. West China Journal of Stomatology 36 (4): 384–388. https://doi.org/10.7518/hxkq.2018.04.007.

    Article  PubMed  Google Scholar 

  19. Monteiro, B.V., S. Pereira Jdos, C.F. Nonaka, G.P. Godoy, E.J. Da Silveira, and M.C. Miguel. 2015. Immunoexpression of Th17-related cytokines in oral lichen planus. Applied Immunohistochemistry & Molecular Morphology 23 (6): 409–415. https://doi.org/10.1097/PAI.0000000000000096.

    Article  CAS  Google Scholar 

  20. Wang, H., D. Zhang, Q. Han, X. Zhao, X. Zeng, Y. Xu, Z. Sun, and Q. Chen. 2016. Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus. Journal of Oral Pathology and Medicine 45 (6): 385–393. https://doi.org/10.1111/jop.12405.

    Article  CAS  PubMed  Google Scholar 

  21. Van Der Meij, E.H., and I. Van Der Waal. 2003. Lack of clinicopathologic correlation in the diagnosis of oral lichen planus based on the presently available diagnostic criteria and suggestions for modifications. Journal of Oral Pathology and Medicine 32 (9): 507–512. https://doi.org/10.1034/j.1600-0714.2003.00125.x.

    Article  PubMed  Google Scholar 

  22. Choi, S.C., J. Brown, M. Gong, Y. Ge, M. Zadeh, W. Li, B.P. Croker, G. Michailidis, T.J. Garrett, M. Mohamadzadeh, and L. Morel. 2020. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Science Translational Medicine 12 (551). https://doi.org/10.1126/scitranslmed.aax2220.

  23. Munoz, L., M.J. Borrero, M. Ubeda, E. Conde, R. Del Campo, M. Rodriguez-Serrano, M. Lario, A.M. Sanchez-Diaz, O. Pastor, D. Diaz, L. Garcia-Bermejo, J. Monserrat, M. Alvarez-Mon, and A. Albillos. 2019. Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis. Hepatology 70 (3): 925–938. https://doi.org/10.1002/hep.30349.

    Article  CAS  PubMed  Google Scholar 

  24. Puppala, E.R., S. Jain, P. Saha, M. Rachamalla, S. Np, S.S. Yalamarthi, M. Abubakar, A. Chaudhary, D. Chamundeswari, M. Usn, J.K. Gangasani, and V.G.M. Naidu. 2022. Perillyl alcohol attenuates rheumatoid arthritis via regulating TLR4/NF-kappaB and Keap1/Nrf2 signaling pathways: a comprehensive study on in-vitro and in-vivo experimental models. Phytomedicine 97:153926. https://doi.org/10.1016/j.phymed.2022.153926.

  25. Khan, A., B. Shal, A.U. Khan, T. Bibi, S.U. Islam, M.W. Baig, I.U. Haq, H. Ali, S. Ahmad, and S. Khan. 2021. Withametelin, a novel phytosterol, alleviates neurological symptoms in EAE mouse model of multiple sclerosis via modulation of Nrf2/HO-1 and TLR4/NF-kappaB signaling. Neurochemistry International 151:105211. https://doi.org/10.1016/j.neuint.2021.105211.

  26. Li, Y., M.Y. Jiang, J.Y. Chen, Z.W. Xu, J.W. Zhang, T. Li, L.L. Zhang, and W. Wei. 2021. CP-25 exerts therapeutic effects in mice with dextran sodium sulfate-induced colitis by inhibiting GRK2 translocation to downregulate the TLR4-NF-kappaB-NLRP3 inflammasome signaling pathway in macrophages. IUBMB Life 73 (12): 1406–1422. https://doi.org/10.1002/iub.2564.

    Article  CAS  PubMed  Google Scholar 

  27. Ge, Y., Y. Xu, W. Sun, Z. Man, L. Zhu, X. Xia, L. Zhao, Y. Zhao, and X. Wang. 2012. The molecular mechanisms of the effect of Dexamethasone and Cyclosporin A on TLR4 /NF-kappaB signaling pathway activation in oral lichen planus. Gene 508 (2): 157–164. https://doi.org/10.1016/j.gene.2012.07.045.

    Article  CAS  PubMed  Google Scholar 

  28. Ryu, J.K., S.J. Kim, S.H. Rah, J.I. Kang, H.E. Jung, D. Lee, H.K. Lee, J.O. Lee, B.S. Park, T.Y. Yoon, and H.M. Kim. 2017. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity 46 (1): 38–50. https://doi.org/10.1016/j.immuni.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  29. De Filippo, K., R.B. Henderson, M. Laschinger, and N. Hogg. 2008. Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. The Journal of Immunology 180 (6): 4308–4315. https://doi.org/10.4049/jimmunol.180.6.4308.

    Article  PubMed  Google Scholar 

  30. Xiao, Q., X. Zhu, S. Yang, J. Wang, R. Yin, J. Song, A. Ma, and X. Pan. 2019. LPS induces CXCL16 expression in HUVECs through the miR-146a-mediated TLR4 pathway. International Immunopharmacology 69: 143–149. https://doi.org/10.1016/j.intimp.2019.01.011.

    Article  CAS  PubMed  Google Scholar 

  31. Hu, D.N., R. Zhang, S. Yao, C.E. Iacob, W.E. Yang, R. Rosen, and S.F. Yang. 2021. Cultured human uveal melanocytes express/secrete CXCL1 and CXCL2 constitutively and increased by lipopolysaccharide via activation of toll-like receptor 4. Current Eye Research 46 (11): 1681–1694. https://doi.org/10.1080/02713683.2021.1929326.

    Article  CAS  PubMed  Google Scholar 

  32. De, A.K., C.L. Miller-Graziano, S.E. Calvano, K. Laudanski, S.F. Lowry, L.L. Moldawer, D.G. Remick Jr., N. Rajicic, D. Schoenfeld, and R.G. Tompkins. 2005. Selective activation of peripheral blood T cell subsets by endotoxin infusion in healthy human subjects corresponds to differential chemokine activation. The Journal of Immunology 175 (9): 6155–6162. https://doi.org/10.4049/jimmunol.175.9.6155.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, L., J. Xia, X. Wang, and F. Xu. 2014. Transcriptional regulation of CCL20 expression. Microbes and Infection 16 (10): 864–870. https://doi.org/10.1016/j.micinf.2014.08.005.

    Article  CAS  PubMed  Google Scholar 

  34. Paulissen, S.M., J.P. Van Hamburg, W. Dankers, and E. Lubberts. 2015. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine 74 (1): 43–53. https://doi.org/10.1016/j.cyto.2015.02.002.

    Article  CAS  PubMed  Google Scholar 

  35. Annunziato, F., L. Cosmi, V. Santarlasci, L. Maggi, F. Liotta, B. Mazzinghi, E. Parente, L. Fili, S. Ferri, F. Frosali, F. Giudici, P. Romagnani, P. Parronchi, F. Tonelli, E. Maggi, and S. Romagnani. 2007. Phenotypic and functional features of human Th17 cells. Journal of Experimental Medicine 204 (8): 1849–1861. https://doi.org/10.1084/jem.20070663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Acosta-Rodriguez, E.V., L. Rivino, J. Geginat, D. Jarrossay, M. Gattorno, A. Lanzavecchia, F. Sallusto, and G. Napolitani. 2007. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nature Immunology 8 (6): 639–646. https://doi.org/10.1038/ni1467.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, S.R., N. Zhong, X.M. Zhang, Z.B. Zhao, R. Balderas, L. Li, and Z.X. Lian. 2021. OMIP 071: A 31-parameter flow cytometry panel for in-depth immunophenotyping of human T-cell subsets using surface markers. Cytometry. Part A 99 (3): 273–277. https://doi.org/10.1002/cyto.a.24272.

    Article  CAS  Google Scholar 

  38. Annunziato, F., L. Cosmi, F. Liotta, E. Maggi, and S. Romagnani. 2012. Defining the human T helper 17 cell phenotype. Trends in Immunology 33 (10): 505–512. https://doi.org/10.1016/j.it.2012.05.004.

    Article  CAS  PubMed  Google Scholar 

  39. Kleinewietfeld, M., and D.A. Hafler. 2013. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Seminars in Immunology 25 (4): 305–312. https://doi.org/10.1016/j.smim.2013.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh, S.P., H.H. Zhang, J.F. Foley, M.N. Hedrick, and J.M. Farber. 2008. Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. The Journal of Immunology 180 (1): 214–221. https://doi.org/10.4049/jimmunol.180.1.214.

    Article  CAS  PubMed  Google Scholar 

  41. Dohlman, T.H., S.K. Chauhan, S. Kodati, J. Hua, Y. Chen, M. Omoto, Z. Sadrai, and R. Dana. 2013. The CCR6/CCL20 axis mediates Th17 cell migration to the ocular surface in dry eye disease. Investigative Ophthalmology & Visual Science 54 (6): 4081–4091. https://doi.org/10.1167/iovs.12-11216.

    Article  CAS  Google Scholar 

  42. Lee, A.Y., T.K. Phan, M.D. Hulett, and H. Korner. 2015. The relationship between CCR6 and its binding partners: Does the CCR6-CCL20 axis have to be extended? Cytokine 72 (1): 97–101. https://doi.org/10.1016/j.cyto.2014.11.029.

    Article  CAS  PubMed  Google Scholar 

  43. Aranami, T., and T. Yamamura. 2008. Th17 Cells and autoimmune encephalomyelitis (EAE/MS). Allergology International 57 (2): 115–120. https://doi.org/10.2332/allergolint.R-07-159.

    Article  CAS  PubMed  Google Scholar 

  44. Comerford, I., M. Bunting, K. Fenix, S. Haylock-Jacobs, W. Litchfield, Y. Harata-Lee, M. Turvey, J. Brazzatti, C. Gregor, P. Nguyen, E. Kara, and S.R. Mccoll. 2010. An immune paradox: How can the same chemokine axis regulate both immune tolerance and activation?: CCR6/CCL20: A chemokine axis balancing immunological tolerance and inflammation in autoimmune disease. BioEssays 32 (12): 1067–1076. https://doi.org/10.1002/bies.201000063.

    Article  CAS  PubMed  Google Scholar 

  45. Yu, Q., X.M. Lou, and Y. He. 2015. Preferential recruitment of Th17 cells to cervical cancer via CCR6-CCL20 pathway. PLoS One 10(3):e0120855. https://doi.org/10.1371/journal.pone.0120855.

  46. Meitei, H.T., N. Jadhav, and G. Lal. 2021. CCR6-CCL20 axis as a therapeutic target for autoimmune diseases. Autoimmunity Reviews 20(7):102846. https://doi.org/10.1016/j.autrev.2021.102846.

  47. Hirota, K., H. Yoshitomi, M. Hashimoto, S. Maeda, S. Teradaira, N. Sugimoto, T. Yamaguchi, T. Nomura, H. Ito, T. Nakamura, N. Sakaguchi, and S. Sakaguchi. 2007. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. Journal of Experimental Medicine 204 (12): 2803–2812. https://doi.org/10.1084/jem.20071397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lou, H., J. Fang, P. Li, W. Zhou, Y. Wang, E. Fan, Y. Li, H. Wang, Z. Liu, L. Xiao, C. Wang, and L. Zhang. 2015. Frequency, suppressive capacity, recruitment and induction mechanisms of regulatory T cells in sinonasal squamous cell carcinoma and nasal inverted papilloma. PLoS One 10(5):e0126463. https://doi.org/10.1371/journal.pone.0126463.

  49. Sakai, R., M. Ito, K. Yoshimoto, S. Chikuma, T. Kurasawa, T. Kondo, K. Suzuki, T. Takeuchi, K. Amano, and A. Yoshimura. 2020. Tocilizumab monotherapy uncovered the role of the CCL22/17-CCR4(+) Treg axis during remission of crescentic glomerulonephritis. Clinical Translational Immunology 9(11):e1203. https://doi.org/10.1002/cti2.1203.

  50. Iellem, A., M. Mariani, R. Lang, H. Recalde, P. Panina-Bordignon, F. Sinigaglia, and D. D’ambrosio. 2001. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. Journal of Experimental Medicine 194 (6): 847–853. https://doi.org/10.1084/jem.194.6.847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Min, H., K. Baek, A. Lee, Y.J. Seok, and Y. Choi. 2021. Genomic characterization of four Escherichia coli strains isolated from oral lichen planus biopsies. Journal of Oral Microbiology 13 (1): 1905958. https://doi.org/10.1080/20002297.2021.1905958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Core Facility of the First Affiliated Hospital of Nanjing Medical University for technical support in flow cytometry experiments.

Funding

This project was supported by the National Natural Science Foundation of China (81970941), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, 2018–87), and the Critical Research and Development Project of Jiangsu Province (Grant Nos. BE2021723).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Mengna Zhang and Linglin Wang. Data analyses were performed by Mengna Zhang, Linglin Wang, Chenyu Zhou, Jia Wang, and Juehua Cheng. The first draft of the manuscript was written by Mengna Zhang. YuanFan designed the experiments and reviewed the manuscript, and all the authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuan Fan.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Nanjing Medical University (No. 2019–281).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 241274 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, L., Zhou, C. et al. E. coli LPS/TLR4/NF-κB Signaling Pathway Regulates Th17/Treg Balance Mediating Inflammatory Responses in Oral Lichen Planus. Inflammation 46, 1077–1090 (2023). https://doi.org/10.1007/s10753-023-01793-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01793-7

KEY WORDS

Navigation