Skip to main content

Advertisement

Log in

Sema3A Drives Alternative Macrophage Activation in the Resolution of Periodontitis via PI3K/AKT/mTOR Signaling

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

A Correction to this article was published on 21 February 2023

This article has been updated

Abstract

Macrophages actively participate in immunomodulatory processes throughout periodontal inflammation. Regulation of M1/M2 polarization affects macrophage chemokine and cytokine secretion, resulting in a distinct immunological status that influences prognosis. Semaphorin 3A (Sema3A), a neurite growth factor, exerts anti-inflammatory effects. In this study, we investigated the immunomodulation of Sema3A on macrophage-related immune responses in vivo and in vitro. Topical medications of Sema3A in mice with periodontitis alleviated inflammatory cell infiltration into gingival tissue and reduced areas with positive IL-6 and TNFα expression. We observed that the positive area with the M2 macrophage marker CD206 increased and that of the M1 macrophage marker iNOS decreased in Sema3A-treated mice. It has been postulated that Sema3A alleviates periodontitis by regulating alternative macrophage activation. To understand the mechanism underlying Sema3A modulation of macrophage polarization, an in vitro macrophage research model was established with RAW264.7 cells, and we demonstrated that Sema3A promotes LPS/IFNγ-induced M1 macrophages to polarize into M2 macrophages and activates the PI3K/AKT/mTOR signaling pathways. Inhibition of the PI3K signaling pathway activation might reduce anti-inflammatory activity and boost the expression of the inflammatory cytokines, iNOS, IL-12, TNFα, and IL-6. This study indicated that Sema3A might be a feasible drug to regulate alternative macrophage activation in the inflammatory response and thus alleviate periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Tonetti, M.S., H. Greenwell, and K.S. Kornman. 2018. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. Journal of Periodontology 89 (Suppl 1): S159–S172. https://doi.org/10.1002/JPER.18-0006.

    Article  PubMed  Google Scholar 

  2. Nazir, M., A. Al-Ansari, K. Al-Khalifa, M. Alhareky, B. Gaffar, and K. Almas. 2020. Global prevalence of periodontal disease and lack of its surveillance. The Scientific World Journal 2020: 2146160. https://doi.org/10.1155/2020/2146160.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Luo, L.S., H.H. Luan, J.F. Jiang, L. Wu, C. Li, W.D. Leng, and X.T. Zeng. 2022. The spatial and temporal trends of severe periodontitis burden in Asia, 1990–2019: A population-based epidemiological study. Journal of Periodontology 93: 1615–1625. https://doi.org/10.1002/JPER.21-0625.

    Article  PubMed  Google Scholar 

  4. Lang, N.P., and P.M. Bartold. 2018. Periodontal health. Journal of Periodontology 89 (Suppl 1): S9–S16. https://doi.org/10.1002/JPER.16-0517.

    Article  PubMed  Google Scholar 

  5. Pan, W., Q. Wang, and Q. Chen. 2019. The cytokine network involved in the host immune response to periodontitis. International Journal of Oral Science 11: 30. https://doi.org/10.1038/s41368-019-0064-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyle, J., and I. Chapple. 2000. Molecular aspects of the pathogenesis of periodontitis. Periodontology 2015 (69): 7–17. https://doi.org/10.1111/prd.12104.

    Article  Google Scholar 

  7. Hajishengallis, G., and T. Chavakis. 2021. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nature reviews. Immunology 21: 426–440. https://doi.org/10.1038/s41577-020-00488-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, X., Q. Wang, X. Yan, Y. Shan, L. Xing, M. Li, H. Long, and W. Lai. 2020. Immune landscape of periodontitis unveils alterations of infiltrating immunocytes and molecular networks-aggregating into an interactive web-tool for periodontitis related immune analysis and visualization. Journal of Translational Medicine 18: 438. https://doi.org/10.1186/s12967-020-02616-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Di Stefano, M., A. Polizzi, S. Santonocito, A. Romano, T. Lombardi, and G. Isola. 2022. Impact of oral microbiome in periodontal health and periodontitis: A critical review on prevention and treatment. International Journal of Molecular Sciences 23. https://doi.org/10.3390/ijms23095142

  10. Xue, J., S.V. Schmidt, J. Sander, A. Draffehn, W. Krebs, I. Quester, D. De Nardo, T.D. Gohel, M. Emde, L. Schmidleithner, H. Ganesan, A. Nino-Castro, M.R. Mallmann, L. Labzin, H. Theis, M. Kraut, M. Beyer, E. Latz, T.C. Freeman, T. Ulas, and J.L. Schultze. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40: 274–288. https://doi.org/10.1016/j.immuni.2014.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karnes, J.M., S.D. Daffner, and C.M. Watkins. 2015. Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone 78: 87–93. https://doi.org/10.1016/j.bone.2015.05.001.

    Article  CAS  PubMed  Google Scholar 

  12. Lam, R.S., N.M. O’Brien-Simpson, J.A. Holden, J.C. Lenzo, S.B. Fong, and E.C. Reynolds. 2016. Unprimed, M1 and M2 macrophages differentially interact with Porphyromonas gingivalis. PLoS ONE 11: e0158629. https://doi.org/10.1371/journal.pone.0158629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, J., Y. Zhu, D. Duan, P. Wang, Y. Xin, L. Bai, Y. Liu, and Y. Xu. 2018. Enhanced activity of macrophage M1/M2 phenotypes in periodontitis. Archives of Oral Biology 96: 234–242. https://doi.org/10.1016/j.archoralbio.2017.03.006.

    Article  CAS  PubMed  Google Scholar 

  14. Zheng, X., S. Wang, L. Xiao, P. Han, K. Xie, S. Ivanovski, Y. Xiao, and Y. Zhou. 2022. LiCl-induced immunomodulatory periodontal regeneration via the activation of the Wnt/beta-catenin signaling pathway. Journal of Periodontal Research 57: 835–848. https://doi.org/10.1111/jre.13022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miyashita, Y., R. Kuraji, H. Ito, and Y. Numabe. 2022. Wound healing in periodontal disease induces macrophage polarization characterized by different arginine-metabolizing enzymes. Journal of Periodontal Research 57: 357–370. https://doi.org/10.1111/jre.12965.

    Article  CAS  PubMed  Google Scholar 

  16. Nakao, Y., T. Fukuda, Q. Zhang, T. Sanui, T. Shinjo, X. Kou, C. Chen, D. Liu, Y. Watanabe, C. Hayashi, H. Yamato, K. Yotsumoto, U. Tanaka, T. Taketomi, T. Uchiumi, A.D. Le, S. Shi, and F. Nishimura. 2021. Exosomes from TNF-alpha-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomaterialia 122: 306–324. https://doi.org/10.1016/j.actbio.2020.12.046.

    Article  CAS  PubMed  Google Scholar 

  17. Polleux, F., T. Morrow, and A. Ghosh. 2000. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404: 567–573. https://doi.org/10.1038/35007001.

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi, M., T. Nakashima, M. Taniguchi, T. Kodama, A. Kumanogoh, and H. Takayanagi. 2012. Osteoprotection by semaphorin 3A. Nature 485: 69–74. https://doi.org/10.1038/nature11000.

    Article  CAS  PubMed  Google Scholar 

  19. Xu, R. 2014. Semaphorin 3A: A new player in bone remodeling. Cell Adhesion & Migration 8: 5–10. https://doi.org/10.4161/cam.27752.

    Article  Google Scholar 

  20. Li, Y., L. Yang, S. He, and J. Hu. 2015. The effect of semaphorin 3A on fracture healing in osteoporotic rats. Journal of Orthopaedic Science 20: 1114–1121. https://doi.org/10.1007/s00776-015-0771-z.

    Article  CAS  PubMed  Google Scholar 

  21. Ranganathan, P., C. Jayakumar, R. Mohamed, N.L. Weintraub, and G. Ramesh. 2014. Semaphorin 3A inactivation suppresses ischemia-reperfusion-induced inflammation and acute kidney injury. American Journal of Physiology-Renal Physiology 307: F183–F194. https://doi.org/10.1152/ajprenal.00177.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, L.N., X.M. Li, D.Q. Ye, and H.F. Pan. 2018. Emerging role of semaphorin-3A in autoimmune diseases. Inflammopharmacology 26: 655–665. https://doi.org/10.1007/s10787-018-0484-y.

    Article  CAS  PubMed  Google Scholar 

  23. Rienks, M., P. Carai, N. Bitsch, M. Schellings, M. Vanhaverbeke, J. Verjans, I. Cuijpers, S. Heymans, and A. Papageorgiou. 2017. Sema3A promotes the resolution of cardiac inflammation after myocardial infarction. Basic Research in Cardiology 112: 42. https://doi.org/10.1007/s00395-017-0630-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vergadi, E., E. Ieronymaki, K. Lyroni, K. Vaporidi, and C. Tsatsanis. 2017. Akt signaling pathway in macrophage activation and M1/M2 polarization. Journal of Immunology (Baltimore, Md. : 1950) 198:1006–1014. https://doi.org/10.4049/jimmunol.1601515

  25. Braun, C., K. Katholnig, C. Kaltenecker, M. Linke, N. Sukhbaatar, M. Hengstschlager, and T. Weichhart. 2021. p38 regulates the tumor suppressor PDCD4 via the TSC-mTORC1 pathway. Cell Stress 5:176–182. https://doi.org/10.15698/cst2021.12.260

  26. Souza, J.A.C., A.V.B. Nogueira, P.P.C. Souza, G. Oliveira, M.C. Medeiros, G.P. Garlet, J.A. Cirelli, and C.J. Rossa. 2017. Suppressor of cytokine signaling 1 expression during LPS-induced inflammation and bone loss in rats. Brazilian Oral Research 31: e75. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0075.

    Article  PubMed  Google Scholar 

  27. Petean, I.B.F., L.A. Almeida-Junior, M.F.M. Arnez, A.M. Queiroz, R.A.B. Silva, L.A.B. Silva, L.H. Faccioli, and F.W.G. Paula-Silva. 2021. Celecoxib treatment dampens LPS-induced periapical bone resorption in a mouse model. International Endodontic Journal 54: 1289–1299. https://doi.org/10.1111/iej.13472.

    Article  CAS  PubMed  Google Scholar 

  28. Mukherjee, S., R. Hussaini, R. White, D. Atwi, A. Fried, S. Sampat, L. Piao, Q. Pan, and P. Banerjee. 2018. TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunology, Immunotherapy 67: 761–774. https://doi.org/10.1007/s00262-018-2130-3.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, B., X. Pang, Z. Li, Z. Chen, and Y. Wang. 2021. Immunomodulation in the treatment of periodontitis: Progress and perspectives. Frontiers in immunology 12: 781378. https://doi.org/10.3389/fimmu.2021.781378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, W., C. Zheng, J. Yang, and B. Li. 2021. Intersection between macrophages and periodontal pathogens in periodontitis. Journal of Leukocyte Biology 110: 577–583. https://doi.org/10.1002/JLB.4MR0421-756R.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, H., J. Xia, Y. Chen, J. Ai, T. Wang, and G. Tan. 2021. Immunosuppressive regulation of dendritic cells and T cells in allergic rhinitis by semaphorin 3A. American Journal of Rhinology & Allergy 35: 846–853. https://doi.org/10.1177/19458924211005592.

    Article  Google Scholar 

  32. Casazza, A., D. Laoui, M. Wenes, S. Rizzolio, N. Bassani, M. Mambretti, S. Deschoemaeker, J.A. Van Ginderachter, L. Tamagnone, and M. Mazzone. 2013. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24: 695–709. https://doi.org/10.1016/j.ccr.2013.11.007.

    Article  CAS  PubMed  Google Scholar 

  33. Teng, Y., Z. Yin, J. Li, K. Li, X. Li, and Y. Zhang. 2017. Adenovirus-mediated delivery of Sema3A alleviates rheumatoid arthritis in a serum-transfer induced mouse model. Oncotarget 8: 66270–66280. https://doi.org/10.18632/oncotarget.19915

  34. Preshaw, P.M., and J.J. Taylor. 2011. How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? Journal of Clinical Periodontology 38 (Suppl 11): 60–84. https://doi.org/10.1111/j.1600-051X.2010.01671.x.

    Article  PubMed  Google Scholar 

  35. Naruishi, K., and T. Nagata. 2018. Biological effects of interleukin-6 on gingival fibroblasts: Cytokine regulation in periodontitis. Journal of Cellular Physiology 233: 6393–6400. https://doi.org/10.1002/jcp.26521.

    Article  CAS  PubMed  Google Scholar 

  36. Luo, G., F. Li, X. Li, Z.G. Wang, and B. Zhang. 2018. TNF-alpha and RANKL promote osteoclastogenesis by upregulating RANK via the NF-kappaB pathway. Molecular Medicine Reports 17: 6605–6611. https://doi.org/10.3892/mmr.2018.8698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marahleh, A., H. Kitaura, F. Ohori, A. Kishikawa, S. Ogawa, W.R. Shen, J. Qi, T. Noguchi, Y. Nara, and I. Mizoguchi. 2019. TNF-alpha Directly enhances osteocyte RANKL expression and promotes osteoclast formation. Frontiers in immunology 10: 2925. https://doi.org/10.3389/fimmu.2019.02925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Metcalfe, S., N. Anselmi, A. Escobar, M.B. Visser, and J.G. Kay. 2021. Innate phagocyte polarization in the oral cavity. Frontiers in immunology 12: 768479. https://doi.org/10.3389/fimmu.2021.768479.

    Article  CAS  PubMed  Google Scholar 

  39. Ruffell, B., and L.M. Coussens. 2015. Macrophages and therapeutic resistance in cancer. Cancer Cell 27: 462–472. https://doi.org/10.1016/j.ccell.2015.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Afik, R., E. Zigmond, M. Vugman, M. Klepfish, E. Shimshoni, M. Pasmanik-Chor, A. Shenoy, E. Bassat, Z. Halpern, T. Geiger, I. Sagi, and C. Varol. 2016. Tumor macrophages are pivotal constructors of tumor collagenous matrix. The Journal of Experimental Medicine 213: 2315–2331. https://doi.org/10.1084/jem.20151193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Olmsted-Davis, E., J. Mejia, E. Salisbury, Z. Gugala, and A.R. Davis. 2021. A Population of M2 macrophages associated with bone formation. Frontiers in immunology 12: 686769. https://doi.org/10.3389/fimmu.2021.686769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miao, Y., L. He, X. Qi, and X. Lin. 2020. Injecting immunosuppressive M2 macrophages alleviates the symptoms of periodontitis in mice. Frontiers in Molecular Biosciences 7: 603817. https://doi.org/10.3389/fmolb.2020.603817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oliveira Costa, F., L.O. Miranda Cota, E.J. Pereira Lages, T.C. Medeiros Lorentz, A.M. Soares Dutra Oliveira, P.A. Dutra Oliveira, and J.E. Costa. 2011. Progression of periodontitis in a sample of regular and irregular compliers under maintenance therapy: A 3-year follow-up study. Journal of Periodontology 82:1279–87. https://doi.org/10.1902/jop.2011.100664

  44. Schwendicke, F., M. Stolpe, A. Plaumann, and C. Graetz. 2016. Cost-effectiveness of regular versus irregular supportive periodontal therapy or tooth removal. Journal of Clinical Periodontology 43: 940–947. https://doi.org/10.1111/jcpe.12595.

    Article  PubMed  Google Scholar 

  45. Yamashita, N., M. Yamane, F. Suto, and Y. Goshima. 2016. TrkA mediates retrograde semaphorin 3A signaling through plexin A4 to regulate dendritic branching. Journal of Cell Science 129: 1802–1814. https://doi.org/10.1242/jcs.184580.

    Article  CAS  PubMed  Google Scholar 

  46. Xing, Q., J. Feng, and X. Zhang. 2021. Glucocorticoids suppressed osteoblast differentiation by decreasing Sema3A expression via the PIK3/Akt pathway. Experimental Cell Research 403: 112595. https://doi.org/10.1016/j.yexcr.2021.112595.

    Article  CAS  PubMed  Google Scholar 

  47. Fang, S., X. Wan, X. Zou, S. Sun, X. Hao, C. Liang, Z. Zhang, F. Zhang, B. Sun, H. Li, and B. Yu. 2021. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death & Disease 12: 88. https://doi.org/10.1038/s41419-020-03357-1.

    Article  CAS  Google Scholar 

  48. Wei, Y., M. Liang, L. Xiong, N. Su, X. Gao, and Z. Jiang. 2021. PD-L1 induces macrophage polarization toward the M2 phenotype via Erk/Akt/mTOR. Experimental Cell Research 402: 112575. https://doi.org/10.1016/j.yexcr.2021.112575.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Dr. Leyi Chen especially thanks Dr. Jingying Chen (0000-0002-7617-5902) for his help with slide scanning and instructions on immunohistochemistry.

Funding

This study was supported by the Oral Infectious Disease Mechanism Research and Clinical Translation Application Innovation Team of Guangdong Province of China (2021KCXTD033 to Buling Wu) and the President Foundation of Shenzhen Stomatology Hospital (Pingshan), Southern Medical University (2022A001 to Buling Wu).

Author information

Authors and Affiliations

Authors

Contributions

TT, WAX, and BLW conceived and designed the experiments. LYC completed most of the animal experiments and wrote the original draft. TT finished the in vitro experiment and drafted the final manuscript and review. ZTW collected and analyzed the data. TT and MQZ helped with some of the immunochemistry staining. All the authors reviewed and approved the final draft of the manuscript.

Corresponding authors

Correspondence to Wenan Xu or Buling Wu.

Ethics declarations

Ethics Approval

Animal experiments were approved and conducted in accordance with the guidelines established by Shenzhen TOP Biotechnology Company (TOP-IACUC-2021–0107).

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Summary

Sema3A exerts an ameliorative effect on LPS-induced periodontitis in mice by regulating the alternative polarization of macrophages.

The original online version of this article was revised: The statement "Tian Tian and Leyi Chen are the co-first authors who contributed equally to this work and share first authorship." should be captured as article note.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, T., Chen, L., Wang, Z. et al. Sema3A Drives Alternative Macrophage Activation in the Resolution of Periodontitis via PI3K/AKT/mTOR Signaling. Inflammation 46, 876–891 (2023). https://doi.org/10.1007/s10753-022-01777-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01777-z

KEY WORDS

Navigation