Skip to main content

Advertisement

Log in

Silence of S1PR4 Represses the Activation of Fibroblast-like Synoviocytes by Regulating IL-17/STAT3 Signaling Pathway

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease with persistent inflammation and progressive joint damage. However, the underlying pathological mechanisms of RA are still unclear. Fibroblast‑like synoviocytes (FLSs) play an important role in the pathogenesis of RA by the regulation of proliferation and apoptosis, and the release of multiple pro-inflammatory factors. The lipid mediator sphingosine-1-phosphate receptor 4 (S1PR4) is one of the sphingolipid sphingosine-1-phosphate (S1P) receptors, which affects the function of immune cells. However, the role of S1PR4 in the activation of FLSs and the development of RA is unknown. In this study, we found that the expression of S1PR4 was significantly increased in RA-FLSs. The silence of S1PR4 decreases the proliferation, migration, proinflammation, and promotes the apoptosis of RA-FLSs, accompanied with repressing interleukin-17 (IL-17)/signal transducer and activator of transcription 3 (STAT3) signal pathway. However, the regulatory effects of S1PR4 silencing on RA-FLSs were partly abolished by additional recombinant human (rh) IL-17A treatment. Therefore, our study demonstrated that S1PR4 silencing might inhibit proliferation, migration, proinflammation, and promote apoptosis of RA-FLSs partly by repressing IL-17, which suggests that inhibitors for S1PR4 might be a potentially promising strategy for the treatment of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhou, D.J., et al. 2020. Driving ability and safety in rheumatoid arthritis: A systematic review. Arthritis Care Res (Hoboken). https://doi.org/10.1002/acr.24137.

    Article  PubMed  Google Scholar 

  2. Zhao, S.S., H. Lyu, D.H. Solomon, and K. Yoshida. 2020. Improving rheumatoid arthritis comparative effectiveness research through causal inference principles: Systematic review using a target trial emulation framework. Annals of the Rheumatic Diseases 79: 883–890. https://doi.org/10.1136/annrheumdis-2020-217200.

    Article  PubMed  Google Scholar 

  3. Zafari, P., et al. 2020. Asymmetric and symmetric dimethylarginine concentration as an indicator of cardiovascular diseases in rheumatoid arthritis patients: A systematic review and meta-analysis of case-control studies. Clinical Rheumatology 39: 127–134. https://doi.org/10.1007/s10067-019-04713-z.

    Article  PubMed  Google Scholar 

  4. Wang, Z., Bao, H.W. and Y.A., Ji. 2020. systematic review and meta-analysis of rituximab combined with methotrexate versus methotrexate alone in the treatment of rheumatoid arthritis. Medicine (Baltimore) 99: e19193.https://doi.org/10.1097/MD.0000000000019193.

  5. Zhang, L., P. Cai, and W. Zhu. 2020. Depression has an impact on disease activity and health-related quality of life in rheumatoid arthritis: A systematic review and meta-analysis. International Journal of Rheumatic Diseases 23: 285–293. https://doi.org/10.1111/1756-185X.13774.

    Article  PubMed  Google Scholar 

  6. Wang, H., X., Li, and G. Gong. 2020. Cardiovascular outcomes in patients with co-existing coronary artery disease and rheumatoid arthritis: A systematic review and meta-analysis. Medicine (Baltimore) 99: e19658. https://doi.org/10.1097/MD.0000000000019658.

  7. Vasconcelos, L.B., M.T. Silva, and T.F. Galvao. 2020. Reduction of biologics in rheumatoid arthritis: A systematic review and meta-analysis. Rheumatology International. https://doi.org/10.1007/s00296-020-04651-z.

    Article  PubMed  Google Scholar 

  8. Silvagni, E., et al. 2020. One year in review 2020: Novelties in the treatment of rheumatoid arthritis. Clinical and Experimental Rheumatology 38: 181–194.

    Article  PubMed  Google Scholar 

  9. Dietze, A., B. Engesaeter, and K. Berg. 2005. Transgene delivery and gelonin cytotoxicity enhanced by photochemical internalization in fibroblast-like synoviocytes (FLS) from rheumatoid arthritis patients. Photochemical & Photobiological Sciences 4: 341–347. https://doi.org/10.1039/b416521g.

    Article  CAS  Google Scholar 

  10. Kraan, M.C., et al. 2004. T cells, fibroblast-like synoviocytes, and granzyme B+ cytotoxic cells are associated with joint damage in patients with recent onset rheumatoid arthritis. Annals of the Rheumatic Diseases 63: 483–488. https://doi.org/10.1136/ard.2003.009225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhai, K.F., et al. 2017. Protective effects of paeonol on inflammatory response in IL-1beta-induced human fibroblast-like synoviocytes and rheumatoid arthritis progression via modulating NF-kappaB pathway. Inflammopharmacology. https://doi.org/10.1007/s10787-017-0385-5.

    Article  PubMed  Google Scholar 

  12. Zhu, L., and L. Zhu. 2017. Sophocarpine suppress inflammatory response in human fibroblast-like synoviocytes and in mice with collagen-induced arthritis. European Cytokine Network 28: 120–126. https://doi.org/10.1684/ecn.2017.0400.

    Article  CAS  PubMed  Google Scholar 

  13. Agonia, I., et al. 2020. IL-17, IL-21 and IL-22 polymorphisms in rheumatoid arthritis: A systematic review and meta-analysis. Cytokine 125: 154813. https://doi.org/10.1016/j.cyto.2019.154813.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, P., et al. 2019. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. Journal of Leukocyte Biology 106: 1233–1240. https://doi.org/10.1002/JLB.4RU0619-197R.

    Article  CAS  PubMed  Google Scholar 

  15. Mohammadi, F.S., et al. 2019. Are genetic variations in IL-21-IL-23R-IL-17A cytokine axis involved in a pathogenic pathway of rheumatoid arthritis? Bayesian hierarchical meta-analysis. Journal Cell Physiology 234: 17159–17171. https://doi.org/10.1002/jcp.28495.

    Article  CAS  Google Scholar 

  16. Taams, L.S. 2020. Interleukin-17 in rheumatoid arthritis: trials and tribulations. The Journal of Experimental Medicine 217. https://doi.org/10.1084/jem.20192048.

  17. van Hamburg, J.P., and S.W. Tas. 2018. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. Journal of Autoimmunity 87: 69–81. https://doi.org/10.1016/j.jaut.2017.12.006.

    Article  CAS  PubMed  Google Scholar 

  18. Agarwal, S., R. Misra, and A. Aggarwal. 2010. Induction of metalloproteinases expression by TLR ligands in human fibroblast like synoviocytes from juvenile idiopathic arthritis patients. Indian Journal of Medical Research 131: 771–779.

    CAS  PubMed  Google Scholar 

  19. Samarpita, S., R. Ganesan, and M. Rasool. 2020. Cyanidin prevents the hyperproliferative potential of fibroblast-like synoviocytes and disease progression via targeting IL-17A cytokine signalling in rheumatoid arthritis. Toxicology and Applied Pharmacology 391: 114917. https://doi.org/10.1016/j.taap.2020.114917.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, S., et al. 2020. Interleukin 17A and IL-17F expression and functional responses in rheumatoid arthritis and peripheral spondyloarthritis. Journal of Rheumatology 47: 1606–1613. https://doi.org/10.3899/jrheum.190571.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S.Y., et al. 2014. Interleukin-17 increases the expression of Toll-like receptor 3 via the STAT3 pathway in rheumatoid arthritis fibroblast-like synoviocytes. Immunology 141: 353–361. https://doi.org/10.1111/imm.12196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lao, M., et al. 2016. Protein Inhibitor of activated STAT3 regulates migration, invasion, and activation of fibroblast-like synoviocytes in rheumatoid arthritis. The Journal of Immunology 196: 596–606. https://doi.org/10.4049/jimmunol.1403254.

    Article  CAS  PubMed  Google Scholar 

  23. Olesch, C., C. Ringel, B. Brune, and A. Weigert. 2017. Beyond immune cell migration: The emerging role of the sphingosine-1-phosphate receptor S1PR4 as a modulator of innate immune cell activation. Mediators of Inflammation 2017: 6059203. https://doi.org/10.1155/2017/6059203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiong, Y., et al. 2019. CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration. Science Immunology 4. https://doi.org/10.1126/sciimmunol.aav1263.

  25. Schuster, C., et al. 2020. S1PR4-dependent CCL2 production promotes macrophage recruitment in a murine psoriasis model. European Journal of Immunology 50: 839–845. https://doi.org/10.1002/eji.201948349.

    Article  CAS  PubMed  Google Scholar 

  26. Olesch, C., et al. 2020. S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI136928.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Burg, N., J.E. Salmon, and T. Hla. 2022. Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nature Reviews Rheumatology 18: 335–351. https://doi.org/10.1038/s41584-022-00784-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, M., et al. 2021. Inhibition of sphingosine 1-phosphate (S1P) receptor 1/2/3 ameliorates biological dysfunction in rheumatoid arthritis fibroblast-like synoviocyte MH7A cells through Galphai/Galphas rebalancing. Clinical and Experimental Pharmacology and Physiology 48: 1080–1089. https://doi.org/10.1111/1440-1681.13460.

    Article  CAS  PubMed  Google Scholar 

  29. Kalden, J.R., and H. Schulze-Koops. 2017. Immunogenicity and loss of response to TNF inhibitors: Implications for rheumatoid arthritis treatment. Nature Reviews Rheumatology 13: 707–718. https://doi.org/10.1038/nrrheum.2017.187.

    Article  CAS  PubMed  Google Scholar 

  30. Bonelli, M., et al. 2019. IRF1 is critical for the TNF-driven interferon response in rheumatoid fibroblast-like synoviocytes: JAKinibs suppress the interferon response in RA-FLSs. Experimental & Molecular Medicine 51: 75. https://doi.org/10.1038/s12276-019-0267-6.

    Article  CAS  Google Scholar 

  31. Sun, M., et al. 2020. Sphingosine kinase 1/sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 pathway: A novel target of geniposide to inhibit angiogenesis. Life Sciences 256: 117988. https://doi.org/10.1016/j.lfs.2020.117988.

    Article  CAS  PubMed  Google Scholar 

  32. Inoue, T., et al. 2019. Upregulation of sphingosine-1-phosphate receptor 3 on fibroblast-like synoviocytes is associated with the development of collagen-induced arthritis via increased interleukin-6 production. PLoS ONE 14: e0218090. https://doi.org/10.1371/journal.pone.0218090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez-Jeldres, T., M. Alvarez-Lobos, and J. Rivera-Nieves. 2021. Targeting sphingosine-1-phosphate signaling in immune-mediated diseases: Beyond multiple sclerosis. Drugs 81: 985–1002. https://doi.org/10.1007/s40265-021-01528-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bigaud, M., et al. 2016. Pathophysiological consequences of a break in S1P1-dependent homeostasis of vascular permeability revealed by S1P1 competitive antagonism. PLoS ONE 11: e0168252. https://doi.org/10.1371/journal.pone.0168252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, C.F., et al. 2019. Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase. Oncogene 38: 5580–5598. https://doi.org/10.1038/s41388-019-0833-3.

    Article  CAS  PubMed  Google Scholar 

  36. Hong, C.H., et al. 2022. Sphingosine 1-phosphate receptor 4 promotes nonalcoholic steatohepatitis by activating NLRP3 inflammasome. Cellular and Molecular Gastroenterology and Hepatology 13: 925–947. https://doi.org/10.1016/j.jcmgh.2021.12.002.

    Article  PubMed  Google Scholar 

  37. Dillmann, C., J. Mora, C. Olesch, B. Brune, and A. Weigert. 2015. S1PR4 is required for plasmacytoid dendritic cell differentiation. Biological Chemistry 396: 775–782. https://doi.org/10.1515/hsz-2014-0271.

    Article  CAS  PubMed  Google Scholar 

  38. Suh, J.H., et al. 2018. Sphingosine-1-phosphate signaling and metabolism gene signature in pediatric inflammatory bowel disease: A matched-case control pilot study. Inflammatory Bowel Diseases 24: 1321–1334. https://doi.org/10.1093/ibd/izy007.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang, J., et al. 2019. Profibrotic effect of IL-17A and elevated IL-17RA in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated lung disease support a direct role for IL-17A/IL-17RA in human fibrotic interstitial lung disease. American Journal of Physiology. Lung Cellular and Molecular Physiology 316: L487–L497. https://doi.org/10.1152/ajplung.00301.2018.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, S.Y., et al. 2013. IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation. Arthritis Research & Therapy 15: R31. https://doi.org/10.1186/ar4179.

    Article  CAS  Google Scholar 

  41. Chang, L., X. Feng, and W. Gao. 2019. Proliferation of rheumatoid arthritis fibroblast-like synoviocytes is enhanced by IL-17-mediated autophagy through STAT3 activation. Connective Tissue Research 60: 358–366. https://doi.org/10.1080/03008207.2018.1552266.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZS designed the study. PZ and QZ conducted the experiments, collected and analyzed the data. PZ wrote the manuscript. ZS revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhenxia Shao.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhang, Q. & Shao, Z. Silence of S1PR4 Represses the Activation of Fibroblast-like Synoviocytes by Regulating IL-17/STAT3 Signaling Pathway. Inflammation 46, 234–243 (2023). https://doi.org/10.1007/s10753-022-01728-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01728-8

KEY WORDS

Navigation