Skip to main content

Advertisement

Log in

Inhibitory Effects of Cold Atmospheric Plasma on Inflammation and Tumor-Like Feature of Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic, debilitating systemic disease characterized by chronic inflammation and progressive joint destruction. Fibroblast-like synoviocytes (FLSs) are one of the most important players in the pathophysiology of RA, acting like tumor cells and secreting inflammatory cytokines. Previous research has shown that cold atmospheric plasma (CAP) inhibits cancer cells and may have anti-inflammatory properties. This study examined the effects of argon plasma jet-produced CAP on the suppression of invasion and inflammation caused by cultured RA-FLS. The findings revealed that CAP reduced cell viability and elevated the percentage of apoptotic RA-FLS by producing reactive oxygen species. Carboxyfluorescein diacetate succinimidyl ester (CFSE) staining confirmed that CAP could decrease the proliferation of RA-FLS. Furthermore, CAP effectively reduced the production of inflammatory factors (e.g., NF-κB and IL-6) as well as destructive factors like receptor activator of nuclear factor kappa-B ligand (RANKL) and matrix metalloproteinases-3 (MMP-3). These data suggest that CAP could be a promising treatment for slowing the progression of RA by reducing tumor-like features and inflammation in RA-FLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

AVAILABILITY OF DATA AND MATERIALS

The data and materials used in this study are available from the corresponding author on reasonable request.

References

  1. Fina-Aviles, F., M. Medina-Peralta, L. Mendez-Boo, E. Hermosilla, J.M. Elorza, M. Garcia-Gil, et al. 2016. The descriptive epidemiology of rheumatoid arthritis in Catalonia: A retrospective study using routinely collected data. Clinical rheumatology 35: 751–757.

    Article  CAS  PubMed  Google Scholar 

  2. McInnes, I.B., and G. Schett. 2011. The pathogenesis of rheumatoid arthritis. The New England journal of medicine 365: 2205–2219.

    Article  CAS  PubMed  Google Scholar 

  3. Lee, D.M., and M.E. Weinblatt. 2001. Rheumatoid arthritis. Lancet (London, England) 358: 903–911.

    Article  CAS  Google Scholar 

  4. Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunological Reviews 233: 233–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goyal, R., A.C. Bulua, N.P. Nikolov, P.L. Schwartzberg, and R.M. Siegel. 2009. Rheumatologic and autoimmune manifestations of primary immunodeficiency disorders. Current opinion in rheumatology 21: 78–84.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sato, K., and H. Takayanagi. 2006. Osteoclasts, rheumatoid arthritis, and osteoimmunology. Current opinion in rheumatology 18: 419–426.

    Article  CAS  PubMed  Google Scholar 

  7. Noss, E.H., and M.B. Brenner. 2008. The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunological reviews 223: 252–270.

    Article  CAS  PubMed  Google Scholar 

  8. Huber, L.C., O. Distler, I. Tarner, R.E. Gay, S. Gay, and T. Pap. 2006. Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology (Oxford, England) 45: 669–675.

    Article  CAS  Google Scholar 

  9. Izquierdo, E., J.D. Cañete, R. Celis, M.J. Del Rey, A. Usategui, S. Marsal, et al. 2011. Synovial fibroblast hyperplasia in rheumatoid arthritis: Clinicopathologic correlations and partial reversal by anti-tumor necrosis factor therapy. Arthritis and rheumatism 63: 2575–2583.

    Article  CAS  PubMed  Google Scholar 

  10. Godfrey, H.P., C. Ilardi, W. Engber, and F.M. Graziano. 1984. Quantitation of human synovial mast cells in rheumatoid arthritis and other rheumatic diseases. Arthritis and rheumatism 27: 852–856.

    Article  CAS  PubMed  Google Scholar 

  11. Ghadially, F.N., and S. Roy. 1967. Ultrastructure of synovial membrane in rheumatoid arthritis. Annals of the rheumatic diseases 26: 426–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Filer, A. 2013. The fibroblast as a therapeutic target in rheumatoid arthritis. Current Opinion in Pharmacology 13: 413–419.

    Article  CAS  PubMed  Google Scholar 

  13. Nanki, T., K. Nagasaka, K. Hayashida, Y. Saita, and N. Miyasaka. 2021. Chemokines regulate IL-6 and IL-8 production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Journal of Immunology (Baltimore, Md : 1950) 167: 5381–5.

  14. McCutchan, A., G.P. Dobson, N. Stewart, H.L. Letson, A.L. Grant, I.-A. Jovanovic, et al. 2019. Absence of cytotoxic and inflammatory effects following in vitro exposure of chondrogenically-differentiated human mesenchymal stem cells to adenosine, lidocaine and Mg2+ solution. Journal of Experimental Orthopaedics 6: 16.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yeremenko, N., K. Zwerina, G. Rigter, D. Pots, J.E. Fonseca, J. Zwerina, et al. 2015. Tumor necrosis factor and interleukin-6 differentially regulate Dkk-1 in the inflamed arthritic joint. Arthritis & rheumatology (Hoboken, NJ) 67: 2071–2075.

    Article  CAS  Google Scholar 

  16. Du, X., H. Zhang, W. Zhang, Q. Wang, W. Wang, G. Ge, et al. 2019. The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. International immunopharmacology 75: 105732.

    Article  CAS  PubMed  Google Scholar 

  17. Geusens, P. 2012. The role of RANK ligand/osteoprotegerin in rheumatoid arthritis. Ther Adv Musculoskelet Dis 4: 225–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pattacini, L., L. Boiardi, B. Casali, and C. Salvarani. 2010. Differential effects of anti-TNF-alpha drugs on fibroblast-like synoviocyte apoptosis. Rheumatology (Oxford, England) 49: 480–489.

    Article  CAS  Google Scholar 

  19. Kim, H.J., S. Lee, H.Y. Lee, H. Won, S.H. Chang, and S.S. Nah. 2015. 15-hydroxyprostaglandin dehydrogenase is upregulated by hydroxychloroquine in rheumatoid arthritis fibroblast-like synoviocytes. Molecular Medicine Reports 12: 4141–4148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma, C., J. Chen, and P. Li. 2019. Geldanamycin induces apoptosis and inhibits inflammation in fibroblast-like synoviocytes isolated from rheumatoid arthritis patients. Journal of cellular biochemistry 120: 16254–16263.

    Article  CAS  PubMed  Google Scholar 

  21. von Woedtke, T., S. Reuter, K. Masur, and K.D. Weltmann. 2013. Plasmas for medicine. Physics Reports 530: 291–320.

    Article  Google Scholar 

  22. Heinlin, J., G. Isbary, W. Stolz, G. Morfill, M. Landthaler, T. Shimizu, et al. 2011. Plasma applications in medicine with a special focus on dermatology. Journal of the European Academy of Dermatology and Venereology : JEADV 25: 1–11.

    Article  CAS  PubMed  Google Scholar 

  23. Faramarzi, F., P. Zafari, M. Alimohammadi, M. Moonesi, A. Rafiei, and S. Bekeschus. 2021. Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. Oxidative Medicine and Cellular Longevity 2021: 9916796.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schmidt, A., S. Bekeschus, T. von Woedtke, and S. Hasse. 2015. Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment. Clinical Plasma Medicine 3: 24–31.

    Article  Google Scholar 

  25. Yan, D., J.H. Sherman, and M. Keidar. 2017. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 8: 15977–15995.

    Article  PubMed  Google Scholar 

  26. Tan, F., Y. Fang, L. Zhu, and M. Al-Rubeai. 2021. Cold atmospheric plasma as an interface biotechnology for enhancing surgical implants. Critical reviews in biotechnology 41: 425–440.

    Article  PubMed  Google Scholar 

  27. Eggers, B., J. Marciniak, S. Memmert, F.J. Kramer, J. Deschner, and M. Nokhbehsaim. 2020. The beneficial effect of cold atmospheric plasma on parameters of molecules and cell function involved in wound healing in human osteoblast-like cells in vitro. Odontology 108: 607–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brun, P., V. Russo, E. Tarricone, S. Corrao, V. Deligianni, A. Leonardi, et al. 2015. Using helium-generated cold plasma to control infection and healing. Plasma Medicine 5: 237–247.

    Article  Google Scholar 

  29. Ishaq, M., M.M. Evans, and K.K. Ostrikov. 2014. Effect of atmospheric gas plasmas on cancer cell signaling. International journal of cancer 134: 1517–1528.

    Article  CAS  PubMed  Google Scholar 

  30. Golpour, M., M. Alimohammadi, A. Mohseni, E. Zaboli, F. Sohbatzadeh, S. Bekeschus, et al. 2022. Lack of Adverse Effects of Cold Physical Plasma-Treated Blood from Leukemia Patients: A Proof-of-Concept Study. Applied Sciences 12: 128.

  31. Tan, F., Y. Fang, L. Zhu, and M. Al-Rubeai. 2020. Controlling stem cell fate using cold atmospheric plasma. Stem Cell Research & Therapy 11: 368.

    Article  Google Scholar 

  32. Turrini, E., R. Laurita, A. Stancampiano, E. Catanzaro, C. Calcabrini, F. Maffei, et al. 2017. Cold Atmospheric Plasma Induces Apoptosis and Oxidative Stress Pathway Regulation in T-Lymphoblastoid Leukemia Cells. Oxidative Medicine and Cellular Longevity 2017: 4271065.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rafiei, A., F. Sohbatzadeh, S. Hadavi, S. Bekeschus, M. Alimohammadi, and R. Valadan. 2020. Inhibition of murine melanoma tumor growth in vitro and in vivo using an argon-based plasma jet. Clinical Plasma Medicine 19: 100102.

  34. Hamurcu, Z., N. Delibaşı, S. Geçene, E.F. Şener, H. Dönmez-Altuntaş, Y. Özkul, et al. 2018. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/ Src signaling in triple negative breast cancer cells. Journal of cancer research and clinical oncology 144: 415–430.

    Article  CAS  PubMed  Google Scholar 

  35. Golpour, M., M. Alimohammadi, F. Sohbatzadeh, S. Fattahi, S. Bekeschus, and A. Rafiei. 2022. Cold atmospheric pressure plasma treatment combined with starvation increases autophagy and apoptosis in melanoma in vitro and in vivo. Experimental Dermatology.

  36. Yang, X., G. Chen, K.N. Yu, M. Yang, S. Peng, J. Ma, et al. 2020. Cold atmospheric plasma induces GSDME-dependent pyroptotic signaling pathway via ROS generation in tumor cells. Cell Death & Disease 11: 295.

    Article  CAS  Google Scholar 

  37. Kim, C.H., J.H. Bahn, S.H. Lee, G.Y. Kim, S.I. Jun, K. Lee, et al. 2010. Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. Journal of biotechnology 150: 530–538.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, C.H., S. Kwon, J.H. Bahn, K. Lee, S.I. Jun, P.D. Rack, et al. 2010. Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Applied physics letters 96: 243701.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu, D., X. Luo, Y. Xu, Q. Cui, Y. Yang, D. Liu, et al. 2016. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochemical and biophysical research communications 473: 1125–1132.

    Article  CAS  PubMed  Google Scholar 

  40. Arndt, S., M. Landthaler, J.L. Zimmermann, P. Unger, E. Wacker, T. Shimizu, et al. 2015. Effects of cold atmospheric plasma (CAP) on ß-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS ONE 10: e0120041.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Arndt, S., P. Unger, E. Wacker, T. Shimizu, J. Heinlin, Y.-F. Li, et al. 2013. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS ONE 8: e79325–e79325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, Y.S., M.H. Lee, H.J. Kim, H.R. Won, and C.H. Kim. 2017. Non-thermal atmospheric plasma ameliorates imiquimod-induced psoriasis-like skin inflammation in mice through inhibition of immune responses and up-regulation of PD-L1 expression. Science and Reports 7: 15564.

    Article  Google Scholar 

  43. Aletaha, D., and J.S. Smolen. 2018. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA 320: 1360–1372.

    Article  PubMed  Google Scholar 

  44. Branimir, A., and M. Miroslav. 2014. Pathogenesis of rheumatoid arthritis. Reumatizam 61: 19–23.

  45. Zafari, P., A. Rafiei, F. Faramarzi, S. Ghaffari, A.H. Amiri, and M. Taghadosi. 1992. Human fibroblast-like synoviocyte isolation matter: A comparison between cell isolation from synovial tissue and synovial fluid from patients with rheumatoid arthritis. Revista da Associacao Medica Brasileira 2021 (67): 1654–1658.

    Google Scholar 

  46. Keidar, M., R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, et al. 2011. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer 105: 1295–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alimohammadi, M., M. Golpur, F. Sohbatzadeh, S. Hadavi, S. Bekeschus, H.A. Niaki, et al. 2020. Cold Atmospheric Plasma Is a Potent Tool to Improve Chemotherapy in Melanoma In Vitro and In Vivo. Biomolecules 10: 1011.

    Article  CAS  PubMed Central  Google Scholar 

  48. Lotfy, K. 2017. Cold plasma jet construction to use in medical, biology and polymer applications. Journal of Modern Physics 8: 1901.

  49. Braný, D., D. Dvorská, E. Halašová, and H. Škovierová. 2020. Cold atmospheric plasma: a powerful tool for modern medicine. International Journal of Molecular Sciences 21.

  50. Kalghatgi, S.U., G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, et al. 2007. Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Transactions On Plasma Science 35: 1559–1566.

    Article  CAS  Google Scholar 

  51. Choi, J.-S., J. Kim, Y.-J. Hong, W.-Y. Bae, E.H. Choi, J.-W. Jeong, et al. 2017. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells. Biomedical Optics Express 8: 2649–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stoffels, E., I. Kieft, R. Sladek, L. Van den Bedem, E. Van der Laan, M. Steinbuch, et al. 2006. Plasma needle for in vivo medical treatment: recent developments and perspectives. Plasma Sources Science and Technology 15: S169.

  53. Wende, K., S. Bekeschus, A. Schmidt, L. Jatsch, S. Hasse, K.D. Weltmann, et al. 2016. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutation Research Genetic Toxicology and Environmental Mutagenesis 798–799: 48–54.

    Article  PubMed  Google Scholar 

  54. Schuster, M., R. Rutkowski, A. Hauschild, R.K. Shojaei, T. von Woedtke, A. Rana, et al. 2018. Side effects in cold plasma treatment of advanced oral cancer—Clinical data and biological interpretation. Clinical Plasma Medicine 10: 9–15.

    Article  Google Scholar 

  55. Kluge, S., S. Bekeschus, C. Bender, H. Benkhai, A. Sckell, H. Below, et al. 2016. Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model. PLoS ONE 11: e0160667.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brun, P., S. Pathak, I. Castagliuolo, G. Palù, P. Brun, M. Zuin, et al. 2014. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. PLoS ONE 9: e104397.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling 20: 1126–1167.

    Article  CAS  Google Scholar 

  58. Biniecka, M., A. Kennedy, U. Fearon, C.T. Ng, D.J. Veale, and J. O’Sullivan. 2010. Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint. 69: 1172–1178.

  59. García-González, A., R. Gaxiola-Robles, and T. Zenteno-Savín. 2015. Oxidative stress in patients with rheumatoid arthritis. Revista de Investigacion Clinica 67: 46–53.

  60. Gan, L., J. Duan, S. Zhang, X. Liu, D. Poorun, X. Liu, et al. 2019. Cold atmospheric plasma ameliorates imiquimod-induced psoriasiform dermatitis in mice by mediating antiproliferative effects. Free Radical Research 53: 269–280.

    Article  CAS  PubMed  Google Scholar 

  61. Privat-Maldonado, A., A. Schmidt, A. Lin, K.-D. Weltmann, K. Wende, A. Bogaerts, et al. 2019. ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. Oxidative Medicine and Cellular Longevity 2019: 9062098.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Spurlock III, C.F., H. Gass, C.J. Bryant, B.C. Wells, N.J. Olsen, and T.M. Aune. 2015. Methotrexate-mediated inhibition of nuclear factor κB activation by distinct pathways in T cells and fibroblast-like synoviocytes. Rheumatology (Oxford, England) 54: 178–87.

  63. Nagahara, M., Y. Waguri-Nagaya, T. Yamagami, M. Aoyama, T. Tada, K. Inoue, et al. 2010. TNF-alpha-induced aquaporin 9 in synoviocytes from patients with OA and RA. Rheumatology (Oxford, England) 49: 898–906.

    Article  CAS  Google Scholar 

  64. Zhang, Q., J. Liu, M. Zhang, S. Wei, R. Li, Y. Gao, et al. 2019. Apoptosis Induction of Fibroblast-Like Synoviocytes Is an Important Molecular-Mechanism for Herbal Medicine along with its Active Components in Treating Rheumatoid Arthritis. Biomolecules 9.

  65. Boehm, D., C. Heslin, P.J. Cullen, and P. Bourke. 2016. Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Scientific Reports 6: 21464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dai, X., K. Bazaka, E.W. Thompson, and K. Ostrikov. 2020. Cold Atmospheric Plasma: A Promising Controller of Cancer Cell States. Cancers (Basel) 12: 3360.

    Article  CAS  Google Scholar 

  67. Bauer, G., D. Sersenová, D.B. Graves, and Z. Machala. 2019. Cold Atmospheric Plasma and Plasma-Activated Medium Trigger RONS-Based Tumor Cell Apoptosis. Science and Reports 9: 14210.

    Article  Google Scholar 

  68. Lee, J.H., and K.N. Kim. 2016. Effects of a Nonthermal Atmospheric Pressure Plasma Jet on Human Gingival Fibroblasts for Biomedical Application. BioMed Research International 2016: 2876916.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Spaggiari, S., O. Kepp, S. Rello-Varona, K. Chaba, S. Adjemian, J. Pype, et al. 2013. Antiapoptotic activity of argon and xenon. Cell Cycle 12: 2636–2642.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wende, K., S. Straßenburg, B. Haertel, M. Harms, S. Holtz, A. Barton, et al. 2014. Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology. Cell Biology International 38: 412–425.

    Article  CAS  PubMed  Google Scholar 

  71. Akter, M., A. Jangra, S.A. Choi, E.H. Choi, and I. Han. 2020. Non-Thermal Atmospheric Pressure Bio-Compatible Plasma Stimulates Apoptosis via p38/MAPK Mechanism in U87 Malignant Glioblastoma. Cancers 12.

  72. Weiss, M., D. Gümbel, E.M. Hanschmann, R. Mandelkow, N. Gelbrich, U. Zimmermann, et al. 2015. Cold Atmospheric Plasma Treatment Induces Anti-Proliferative Effects in Prostate Cancer Cells by Redox and Apoptotic Signaling Pathways. PLoS ONE 10: e0130350.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schneider, C., S. Arndt, J.L. Zimmermann, Y. Li, S. Karrer, and A.K. Bosserhoff. 2018. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells. Biological Chemistry 400: 111–122.

    Article  PubMed  Google Scholar 

  74. Lacey, D., A. Sampey, R. Mitchell, R. Bucala, L. Santos, M. Leech, et al. 2003. Control of fibroblast-like synoviocyte proliferation by macrophage migration inhibitory factor. Arthritis and Rheumatism 48: 103–109.

    Article  CAS  PubMed  Google Scholar 

  75. Tavares-da-Silva, E., E. Pereira, A.S. Pires, A.R. Neves, C. Braz-Guilherme, I.A. Marques, et al. 2021. Cold Atmospheric Plasma, a Novel Approach against Bladder Cancer, with Higher Sensitivity for the High-Grade Cell Line. Biology 10.

  76. Makarov, S.S. 2001. NF-kappa B in rheumatoid arthritis: A pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Research 3: 200–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiang, L., X. Xu, S. Zhang, D. Cai, and X. Dai. 2018. Cold atmospheric plasma conveys selectivity on triple negative breast cancer cells both in vitro and in vivo. Free Radical Biology & Medicine 124: 205–213.

    Article  CAS  Google Scholar 

  78. Martirosyan, D., H. Ghomi, M.R. Ashoori, A. Rezaeinezhad, A.S. Mikaeili, F. Jahanbakhshi, et al. 2021. Study of the effect of gallic acid and cold plasma on the levels of inflammatory factors and antioxidants in the serum sample of subjects with type 2 diabetes mellitus. Bioactive Compounds in Health and Disease 4: 167–179.

    Article  Google Scholar 

  79. Hua, D., D. Cai, M. Ning, L. Yu, Z. Zhang, P. Han, et al. 2021. Cold atmospheric plasma selectively induces G(0)/G(1) cell cycle arrest and apoptosis in AR-independent prostate cancer cells. Journal of Cancer 12: 5977–5986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ma, J.D., J. Jing, J.W. Wang, T. Yan, Q.H. Li, Y.Q. Mo, et al. 2019. A novel function of artesunate on inhibiting migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Research & Therapy 21: 153.

    Article  Google Scholar 

  81. Jin, X.-N., E.-Z. Yan, H.-M. Wang, H.-J. Sui, Z. Liu, W. Gao, et al. 2016. Hyperoside exerts anti-inflammatory and anti-arthritic effects in LPS-stimulated human fibroblast-like synoviocytes in vitro and in mice with collagen-induced arthritis. Acta Pharmacologica Sinica 37: 674–686.

  82. Lee, A., Y. Qiao, G. Grigoriev, J. Chen, K.H. Park-Min, S.H. Park, et al. 2013. Tumor necrosis factor α induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis and Rheumatism 65: 928–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin, J., Z. Zhou, R. Huo, L. Xiao, G. Ouyang, L. Wang, et al. 2012. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. Journal of Immunology (Baltimore, Md : 1950) 188: 5776–84.

  84. Dasgupta, B., M. Corkill, B. Kirkham, T. Gibson, and G. Panayi. 1992. Serial estimation of interleukin 6 as a measure of systemic disease in rheumatoid arthritis. The Journal of Rheumatology 19: 22–25.

    CAS  PubMed  Google Scholar 

  85. Hirano, T., T. Matsuda, M. Turner, N. Miyasaka, G. Buchan, B. Tang, et al. 1988. Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. European Journal of Immunology 18: 1797–1801.

    Article  CAS  PubMed  Google Scholar 

  86. Lou, L., J. Zhou, Y. Liu, Y. Wei, J. Zhao, J. Deng, et al. 2016. Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways. Experimental and Therapeutic Medicine 11: 2054–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Akbari, Z., F. Saadati, H. Mahdikia, E. Freund, F. Abbasvandi, B. Shokri, et al. 2021. Antitumor Effects in Gas Plasma-Treated Patient-Derived Microtissues—An Adjuvant Therapy for Ulcerating Breast Cancer? Applied Sciences 11: 4527.

    Article  CAS  Google Scholar 

  88. Arndt, S., P. Unger, A.K. Bosserhoff, M. Berneburg, and S. Karrer. 2021. The Anti-Fibrotic Effect of Cold Atmospheric Plasma on Localized Scleroderma In Vitro and In Vivo. Biomedicines 9.

  89. Gareri, C., L. Bennardo, and G. De Masi. 2020. Use of a new cold plasma tool for psoriasis treatment: A case report. SAGE Open Medical Case Reports 8: 2050313X20922709–2050313X20922709.

  90. Haertel, B., T. von Woedtke, K.-D. Weltmann, and U. Lindequist. 2014. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomolecules & Therapeutics (Seoul) 22: 477–490.

    Article  CAS  Google Scholar 

  91. Tian, J., J.W. Chen, J.S. Gao, L. Li, and X. Xie. 2013. Resveratrol inhibits TNF-α-induced IL-1β, MMP-3 production in human rheumatoid arthritis fibroblast-like synoviocytes via modulation of PI3kinase/Akt pathway. Rheumatology International 33: 1829–1835.

    Article  CAS  PubMed  Google Scholar 

  92. Lee, H.Y., H.S. Jeon, E.K. Song, M.K. Han, S.I. Park, S.I. Lee, et al. 2006. CD40 ligation of rheumatoid synovial fibroblasts regulates RANKL-medicated osteoclastogenesis: Evidence of NF-κB–dependent, CD40-mediated bone destruction in rheumatoid arthritis. Arthritis & Rheumatology 54: 1747–1758.

    Article  CAS  Google Scholar 

  93. Ainola, M., J. Mandelin, M. Liljeström, Y.T. Konttinen, and J. Salo. 2008. Imbalanced expression of RANKL and osteoprotegerin mRNA in pannus tissue of rheumatoid arthritis. Clinical and Experimental Rheumatology 26: 240–246.

    CAS  PubMed  Google Scholar 

  94. Takayanagi, H., H. Iizuka, T. Juji, T. Nakagawa, A. Yamamoto, T. Miyazaki, et al. 2000. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis and Rheumatism 43: 259–269.

    Article  CAS  PubMed  Google Scholar 

  95. Luo, G., F. Li, X. Li, Z.-G. Wang, and B. Zhang. 2018. TNF-α and RANKL promote osteoclastogenesis by upregulating RANK via the NF-κB pathway. Molecular Medicine Reports 17: 6605–6611.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. García-López, S., R. Villanueva, and M.C. Meikle. 2013. Alterations in the Synthesis of IL-1β, TNF-α, IL-6, and Their Downstream Targets RANKL and OPG by Mouse Calvarial Osteoblasts In vitro: Inhibition of Bone Resorption by Cyclic Mechanical Strain. Frontiers in endocrinology 4: 160.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Almeida, N.D., K. Sack, and J.H. Sherman. 2020. Clinical Applications of Cold Atmospheric Plasma: Springer Series on Atomic, Optical, and Plasma Physics.

  98. Gümbel, D., N. Gelbrich, M. Weiss, M. Napp, G. Daeschlein, A. Sckell, et al. 2016. New treatment options for osteosarcoma - inactivation of osteosarcoma cells by cold atmospheric plasma. Anticancer Research 36: 5915–5922.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank the patients and their families for their support and cooperation. We want to acknowledge the staff of the departments associated with the care and management of the patients.

Funding

This study was financially supported by a grant (grant number: 6891) from the Research and Technology Council of Mazandaran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. FF: conceptualization, investigation, methodology, data curation, formal analysis, and writing–original draft; PZ: investigation, formal analysis, and methodology; MA: writing–review and editing; MG: investigation; SG: investigation and methodology; AR: funding acquisition, project administration, supervision, validation, and writing review and editing.

Corresponding author

Correspondence to Alireza Rafiei.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the Ethics Committee of the Mazandaran University of Medical Sciences (ethical approval code: IR.MAZUMS.REC.1398.6891).

Consent for Publication

The manuscript is approved by all authors for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faramarzi, F., Zafari, P., Alimohammadi, M. et al. Inhibitory Effects of Cold Atmospheric Plasma on Inflammation and Tumor-Like Feature of Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis. Inflammation 45, 2433–2448 (2022). https://doi.org/10.1007/s10753-022-01703-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01703-3

KEY WORDS

Navigation