Skip to main content

Advertisement

Log in

Ex Vivo Culture Models of Hidradenitis Suppurativa for Defining Molecular Pathogenesis and Treatment Efficacy of Novel Drugs

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Hidradenitis suppurativa (HS) is a complex and debilitating inflammatory skin disease for which no effective treatment is available currently. This is partly because of the lack of adequate human or animal models for defining the pathobiology of the disease. Here, we describe the development of air–liquid (A-L) interface, liquid-submersion (L-S), and bioreactor (Bio) ex vivo skin culture models. All three ex vivo platforms were effective for culturing skin samples for up to 14 days. Tissue architecture and integrity remained intact for at least 3 days for healthy skin and 14 days for HS skin. Up to day 3, no significant differences were observed in % early apoptotic cells among all three platforms. However, late apoptotic/necrotic cell death was increased in HS skin at day 3 in A-L and Bio culture. These cultures efficiently support the growth of various cells populations, including keratinocytes and immune cells. Profiling inflammatory gene signatures in HS skin from these ex vivo cultures showed dynamic changes in expression at day 3 and day 14. All three culture platforms were necessary to represent the inflammatory gene status of HS skin at day 0, suggesting that not all gene clusters were identically altered in each culture method. Similarly, cytokine/chemokine profiling of the supernatants from vehicle- and drug-treated ex vivo HS cultures again showed a better prediction of drug efficacy against HS. Overall, development of these three culture systems collectively provides a powerful tool to uncover the pathobiology of HS progression and screen various drugs against HS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Data generated/analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Garg, A., J.S. Kirby, J. Lavian, G. Lin, and A. Strunk. 2017. Sex- and age-adjusted population analysis of prevalence estimates for hidradenitis suppurativa in the United States. JAMA dermatology 153: 760–764.

    Article  Google Scholar 

  2. Phan, K., O. Charlton, and S.D. Smith. 2020. Global prevalence of hidradenitis suppurativa and geographical variation—Systematic review and meta-analysis. Biomedical Dermatology 4: 2.

    Article  Google Scholar 

  3. Frew, J.W., K. Navrazhina, M. Marohn, P.C. Lu, and J.G. Krueger. 2019. Contribution of fibroblasts to tunnel formation and inflammation in hidradenitis suppurativa/acne inversa. Experimental dermatology 28: 886–891.

    Article  CAS  Google Scholar 

  4. Guenin-Mace, L., J.D. Morel, J.M. Doisne, A. Schiavo, L. Boulet, V. Mayau, P. Goncalves, S. Duchatelet, A. Hovnanian, V. Bondet, et al. 2020. Dysregulation of tryptophan catabolism at the host-skin microbiota interface in hidradenitis suppurativa. JCI Insight 5: e140598.

  5. Byrd, A.S., C. Carmona-Rivera, L.J. O’Neil, P.M. Carlucci, C. Cisar, A.Z. Rosenberg, M.L. Kerns, J.A. Caffrey, S.M. Milner, J.M. Sacks, et al. 2019. Neutrophil extracellular traps B cells, and type I interferons contribute to immune dysregulation in hidradenitis suppurativa. Science translational medicine 11: 508.

    Article  Google Scholar 

  6. van der Zee, H.H., L. de Ruiter, J. Boer, D.G. van den Broecke, J.C. den Hollander, J.D. Laman, and E.P. Prens. 2012. Alterations in leucocyte subsets and histomorphology in normal-appearing perilesional skin and early and chronic hidradenitis suppurativa lesions. British Journal of Dermatology 166: 98–106.

    Article  Google Scholar 

  7. Shah, N. 2005. Hidradenitis suppurativa: A treatment challenge. American family physician 72: 1547–1552.

    PubMed  Google Scholar 

  8. Hotz, C., M. Boniotto, A. Guguin, M. Surenaud, F. Jean-Louis, P. Tisserand, N. Ortonne, B. Hersant, R. Bosc, F. Poli, et al. 2016. Intrinsic defect in keratinocyte function leads to inflammation in hidradenitis suppurativa. Journal of Investigative Dermatology 136: 1768–1780.

    Article  CAS  Google Scholar 

  9. Navrazhina, K., J.W. Frew, P. Gilleaudeau, M. Sullivan-Whalen, S. Garcet, and J.G. Krueger. 2021. Epithelialized tunnels are a source of inflammation in hidradenitis suppurativa. Journal of Allergy and Clinical Immunology 147: 2213–2224.

    Article  CAS  Google Scholar 

  10. Sbidian, E., C. Hotz, J. Seneschal, A. Maruani, F. Amelot, F. Aubin, C. Paul, M. Beylot-Barry, P. Humbert, A. Dupuy, et al. 2016. Antitumour necrosis factor-alpha therapy for hidradenitis suppurativa: Results from a national cohort study between 2000 and 2013. British Journal of Dermatology 174: 667–670.

    Article  CAS  Google Scholar 

  11. Theut-Riis, P., L.R. Thorlacius, and G.B. Jemec. 2018. Investigational drugs in clinical trials for hidradenitis suppurativa. Expert opinion on investigational drugs 27: 43–53.

    Article  CAS  Google Scholar 

  12. van der Zee, H.H., L. de Ruiter, D.G. van den Broecke, W.A. Dik, J.D. Laman, and E.P. Prens. 2011. Elevated levels of tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-10 in hidradenitis suppurativa skin: A rationale for targeting TNF-alpha and IL-1beta. British Journal of Dermatology 164: 1292–1298.

    Article  Google Scholar 

  13. Lowe, M.M., H.B. Naik, S. Clancy, M. Pauli, K.M. Smith, Y. Bi, R., Dunstan, J.E. Gudjonsson, M. Paul, H. Harris, et al. 2020. Immunopathogenesis of hidradenitis suppurativa and response to anti-TNF-alpha therapy. JCI Insight 5: e139932.

  14. Folkes, A.S., F.Z. Hawatmeh, A. Wong, and F.A. Kerdel. 2020. Emerging drugs for the treatment of hidradenitis suppurativa. Expert Opinion on Emerging Drugs 25: 201–211.

    Article  CAS  Google Scholar 

  15. Marzano, A.V., G. Genovese, G. Casazza, C. Moltrasio, P. Dapavo, G. Micali, R. Sirna, P. Gisondi, A. Patrizi, V. Dini, et al. 2021. Evidence for a “window of opportunity” in hidradenitis suppurativa treated with adalimumab: A retrospective real-life multicentre cohort study. British Journal of Dermatology 184: 133–140.

    Article  CAS  Google Scholar 

  16. Frew, J.W., J.E. Hawkes, and J.G. Krueger. 2018. A systematic review and critical evaluation of inflammatory cytokine associations in hidradenitis suppurativa. F1000Research 7: 1930.

  17. Goliwas, K.F., J.R. Richter, H.C. Pruitt, L.M. Araysi, N.R. Anderson, R.S. Samant, S.M. Lobo-Ruppert, J.L. Berry, and A.R. Frost. 2017. Methods to evaluate cell growth, viability, and response to treatment in a tissue engineered breast cancer model. Scientific reports 7: 14167.

    Article  Google Scholar 

  18. Kashyap, M., N. Kawamorita, V. Tyagi, Y. Sugino, M. Chancellor, N. Yoshimura, and P. Tyagi. 2013. Down-regulation of nerve growth factor expression in the bladder by antisense oligonucleotides as new treatment for overactive bladder. The Journal of urology 190: 757–764.

    Article  CAS  Google Scholar 

  19. Goliwas, K.F., C.S. Simmons, S.A. Khan, A.M. Wood, Y. Wang, J.L. Berry, M. Athar, J.A. Mobley, Y.I. Kim, V.J. Thannickal, et al. 2021. Local SARS-CoV-2 peptide-specific immune responses in convalescent and uninfected human lung tissue models. medRxiv.

  20. Bao, Y., X. Wu, J. Chen, X. Hu, F. Zeng, J. Cheng, H. Jin, and X., Lin, and L.F. Chen. 2017. Brd4 modulates the innate immune response through Mnk2-eIF4E pathway-dependent translational control of IkappaBalpha. Proceedings of the National Academy of Sciences 114: E3993–E4001.

    Article  CAS  Google Scholar 

  21. Fink, E.C., and B.L. Ebert. 2015. The novel mechanism of lenalidomide activity. Blood 126: 2366–2369.

    Article  CAS  Google Scholar 

  22. Banerjee, A., S. McNish, and V.K. Shanmugam. 2017. Interferon-gamma (IFN-gamma) is elevated in wound exudate from hidradenitis suppurativa. Immunological investigations 46: 149–158.

    Article  CAS  Google Scholar 

  23. Hessam, S., M. Sand, T. Gambichler, M. Skrygan, I. Ruddel, and F.G. Bechara. 2018. Interleukin-36 in hidradenitis suppurativa: Evidence for a distinctive proinflammatory role and a key factor in the development of an inflammatory loop. British Journal of Dermatology 178: 761–767.

    Article  CAS  Google Scholar 

  24. Jimenez-Gallo, D., R. de la Varga-Martinez, L. Ossorio-Garcia, C. Albarran-Planelles, C. Rodriguez, and M. Linares-Barrios. 2017. The clinical significance of increased serum proinflammatory cytokines C-reactive protein and erythrocyte sedimentation rate in patients with hidradenitis suppurativa. Mediators of inflammation 2017: 2450401.

    Article  CAS  Google Scholar 

  25. Kanni, T., V. Tzanetakou, A. Savva, B. Kersten, A. Pistiki, F.L. van de Veerdonk, M.G. Netea, J.W. van der Meer, and E.J. Giamarellos-Bourboulis. 2015. Compartmentalized cytokine responses in hidradenitis suppurativa. PLoS One 10: e0130522.

  26. Vossen, A., C.B. Ardon, H.H. van der Zee, E. Lubberts, and E.P. Prens. 2019. The anti-inflammatory potency of biologics targeting tumour necrosis factor-alpha, interleukin (IL)-17A, IL-12/23 and CD20 in hidradenitis suppurativa: An ex vivo study. British Journal of Dermatology 181: 314–323.

    Article  CAS  Google Scholar 

  27. Brandao, L., R. Moura, P.M. Tricarico, R. Gratton, G. Genovese, C. Moltrasio, S. Garcovich, M. Boniotto, S. Crovella, and A.V. Marzano. 2020. Altered keratinization and vitamin D metabolism may be key pathogenetic pathways in syndromic hidradenitis suppurativa: A novel whole exome sequencing approach. Journal of Dermatological Science 99: 17–22.

    Article  CAS  Google Scholar 

  28. Filippou, P.S., G.S. Karagiannis, and A. Constantinidou. 2020. Midkine (MDK) growth factor: A key player in cancer progression and a promising therapeutic target. Oncogene 39: 2040–2054.

    Article  CAS  Google Scholar 

  29. Hoffman, L.K., L.E. Tomalin, G. Schultz, M.D. Howell, N. Anandasabapathy, A. Alavi, M. Suarez-Farinas, and M.A. Lowes. 2018. Integrating the skin and blood transcriptomes and serum proteome in hidradenitis suppurativa reveals complement dysregulation and a plasma cell signature. PLoS One 13: e0203672.

  30. Jones, S.E., and C. Jomary. 2002. Clusterin. The international journal of biochemistry & cell biology 34: 427–431.

    Article  CAS  Google Scholar 

  31. Sabat, R., A. Chanwangpong, S. Schneider-Burrus, D. Metternich, G. Kokolakis, A. Kurek, S. Philipp, D. Uribe, K. Wolk, and W. Sterry. 2012. Increased prevalence of metabolic syndrome in patients with acne inversa. PLoS One 7: e31810.

Download references

Funding

NIH grant RO1 ES026219 and NCI grant 5P01CA210946 and by intramural UAB funds to M.A.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: J.S.D., C.R., M.S.M., M.A. Performed the experiments: K.F.G., M.P.K., J.K., R.S., Z.W., A.O., L.J., V.A., M.B.L. Analyzed the data: K.F.G., M.P.K., J.K., R.S., Z.W., A.O., L.J., V.A., M.B.L., C.A.E., M.S.M., C.R., J.S.D., M.A. Contributed reagents/materials/analysis tools: C.A.E., M.S.M., C.R., J.S.D., M.A. Wrote the paper: K.F.G., M.P.K., J.S.D., and M.A.

Corresponding authors

Correspondence to Jessy S. Deshane or Mohammad Athar.

Ethics declarations

Ethical Approval and Consent to Participate

The institutional Review Board of the University of Alabama at Birmingham approved the protocol (IRB-300005214) for obtaining surgically removed discarded skin tissues from breast/tummy reduction from otherwise healthy individuals and HS patients.

Consent of Publication

All authors agree to submit this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 13524 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goliwas, K., Kashyap, M.P., Khan, J. et al. Ex Vivo Culture Models of Hidradenitis Suppurativa for Defining Molecular Pathogenesis and Treatment Efficacy of Novel Drugs. Inflammation 45, 1388–1401 (2022). https://doi.org/10.1007/s10753-022-01629-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01629-w

KEY WORDS

Navigation