Skip to main content
Log in

Isorhamnetin Alleviates High Glucose-Aggravated Inflammatory Response and Apoptosis in Oxygen-Glucose Deprivation and Reoxygenation-Induced HT22 Hippocampal Neurons Through Akt/SIRT1/Nrf2/HO-1 Signaling Pathway

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

This study is aimed at exploring the potential of isorhamnetin in protection against diabetes-exacerbated ischemia/reperfusion-induced brain injury and elucidating its action mechanism. After establishment of the model of high glucose (HG)-aggravated oxygen-glucose deprivation and reoxygenation (OGD/R), HT22 cell viability was detected by CCK-8. Lactate dehydrogenase (LDH) activity, casapase-3 activity, and oxidative stress-related markers in HT22 cells were detected by corresponding commercial kits. The apoptosis of HG-treated HT22 cells following OGD/R was observed with TUNEL staining. The level of pro-inflammatory cytokines was examined by ELISA. The expression of Akt/SIRT1/Nrf2/HO-1 signaling-related proteins was assayed by Western blot. The results showed that HG noticeably worsened the OGD/R-induced apoptosis of HT22 cells. Isorhamnetin relieved the HG-aggravated OGD/R-induced apoptosis, inflammatory response, and oxidative stress of HT22 cells. Isorhamnetin alleviated the HG-aggravated OGD/R injury in HT22 cells through Akt/SIRT1/Nrf2/HO-1 signaling pathway. Meanwhile, treatment with Akt inhibitor LY294002 reversed the protective effects of isorhamnetin against HG-aggravated OGD/R injury in HT22 cells. In a conclusion, Isorhamnetin alleviates HG-aggravated OGD/R in HT22 hippocampal neurons through Akt/SIRT1/Nrf2/HO-1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this article.

References

  1. Tachibana, M., T. Ago, Y. Wakisaka, J. Kuroda, M. Shijo, Y. Yoshikawa, M. Komori, A. Nishimura, N. Makihara, K. Nakamura, and T. Kitazono. 2017. Early reperfusion after brain ischemia has beneficial effects beyond rescuing neurons. Stroke 48 (8): 2222–2230. https://doi.org/10.1161/STROKEAHA.117.016689.

    Article  CAS  PubMed  Google Scholar 

  2. Yang, Z., C. Weian, H. Susu, and W. Hanmin. 2016. Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms. Eur J Pharmacol 771: 145–151. https://doi.org/10.1016/j.ejphar.2015.12.003.

    Article  CAS  PubMed  Google Scholar 

  3. Salim, S. 2017. Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360 (1): 201–205. https://doi.org/10.1124/jpet.116.237503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Solberg, R., M. Longini, F. Proietti, S. Perrone, C. Felici, A. Porta, O.D. Saugstad, and G. Buonocore. 2017. DHA reduces oxidative stress after perinatal asphyxia: a study in newborn piglets. Neonatology 112 (1): 1–8. https://doi.org/10.1159/000454982.

    Article  CAS  PubMed  Google Scholar 

  5. Torres-Cuevas, I., M. Corral-Debrinski, and P. Gressens. 2019. Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation. Free Radic Biol Med 142: 3–15. https://doi.org/10.1016/j.freeradbiomed.2019.06.011.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, Y.S., S.J. Son, J.H. Choi, and J.C. Rah. 2018. Synaptic transmission and excitability during hypoxia with inflammation and reoxygenation in hippocampal CA1 neurons. Neuropharmacology 138: 20–31. https://doi.org/10.1016/j.neuropharm.2018.05.011.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, L., J. Cao, D. Cao, M. Wang, H. Xiang, Y. Yang, T. Ying, and H. Cong. 2019. Protective effect of dexmedetomidine against diabetic hyperglycemia-exacerbated cerebral ischemia/reperfusion injury: An in vivo and in vitro study. Life Sci 235: 116553. https://doi.org/10.1016/j.lfs.2019.116553.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, R., B. Ovbiagele, and W. Feng. 2016. Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci 351 (4): 380–386. https://doi.org/10.1016/j.amjms.2016.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liao, C.C., C.C. Shih, C.C. Yeh, Y.C. Chang, C.J. Hu, J.G. Lin, and T.L. Chen. 2015. Impact of diabetes on stroke risk and outcomes: two nationwide retrospective cohort studies. Medicine (Baltimore) 94 (52): e2282. https://doi.org/10.1097/MD.0000000000002282.

    Article  PubMed Central  Google Scholar 

  10. Masrur, S., M. Cox, D.L. Bhatt, E.E. Smith, G. Ellrodt, G.C. Fonarow, and L. Schwamm. 2015. Association of acute and chronic hyperglycemia with acute ischemic stroke outcomes post-thrombolysis: findings from get with the guidelines-stroke. J Am Heart Assoc 4 (10): e002193. https://doi.org/10.1161/JAHA.115.002193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abdal Dayem, A., H.Y. Choi, Y.B. Kim, and S.G. Cho. 2015. Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One 10 (3): e0121610. https://doi.org/10.1371/journal.pone.0121610.

    Article  CAS  PubMed  Google Scholar 

  12. Gong, G., Y.Y. Guan, Z.L. Zhang, K. Rahman, S.J. Wang, S. Zhou, X. Luan, and H. Zhang. 2020. Isorhamnetin: a review of pharmacological effects. Biomed Pharmacother 128: 110301. https://doi.org/10.1016/j.biopha.2020.110301.

    Article  CAS  PubMed  Google Scholar 

  13. Xu, S.L., R.C. Choi, K.Y. Zhu, K.W. Leung, A.J. Guo, D. Bi, H. Xu, D.T. Lau, T.T. Dong, and K.W. Tsim. 2012. Isorhamnetin, a flavonol aglycone from Ginkgo biloba L., induces neuronal differentiation of cultured PC12 cells: potentiating the effect of nerve growth factor. Evid Based Complement Alternat Med 2012: 278273. https://doi.org/10.1155/2012/278273.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang, N., F. Pei, H. Wei, T. Zhang, C. Yang, G. Ma, and C. Yang. 2011. Isorhamnetin protects rat ventricular myocytes from ischemia and reperfusion injury. Exp Toxicol Pathol 63 (1-2): 33–38. https://doi.org/10.1016/j.etp.2009.09.005.

    Article  CAS  PubMed  Google Scholar 

  15. Huang, L., H. He, Z. Liu, D. Liu, D. Yin, and M. He. 2016. Protective effects of isorhamnetin on cardiomyocytes against anoxia/reoxygenation-induced injury is mediated by SIRT1. J Cardiovasc Pharmacol 67 (6): 526–537. https://doi.org/10.1097/FJC.0000000000000376.

    Article  CAS  PubMed  Google Scholar 

  16. Duan, J., J. Cui, H. Zheng, M. Xi, C. Guo, Y. Weng, Y. Yin, G. Wei, J. Cao, Y. Wang, A. Wen, and B. Qiao. 2019. Aralia taibaiensis protects against I/R-induced brain cell injury through the Akt/SIRT1/FOXO3a pathway. Oxid Med Cell Longev 2019: 7609765–7609718. https://doi.org/10.1155/2019/7609765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diao, C., Z. Chen, T. Qiu, H. Liu, Y. Yang, X. Liu, J. Wu, and L. Wang. 2019. Inhibition of PRMT5 attenuates oxidative stress-induced pyroptosis via activation of the Nrf2/HO-1 signal pathway in a mouse model of renal ischemia-reperfusion injury. Oxid Med Cell Longev 2019: 2345658–2345618. https://doi.org/10.1155/2019/2345658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ping, F.C., and L.C. Jenkins. 1978. Protection of the brain from hypoxia: a review. Can Anaesth Soc J 25 (6): 468–473. https://doi.org/10.1007/BF03007408.

    Article  CAS  PubMed  Google Scholar 

  19. Ramiro, J.I., and A. Kumar. 2015. Updates on management of anoxic brain injury after cardiac arrest. Mo Med 112 (2): 136–141.

    PubMed  PubMed Central  Google Scholar 

  20. Nagashima, T., S. Wu, M. Yamaguchi, and N. Tamaki. 1999. Reoxygenation injury of human brain capillary endothelial cells. Cell Mol Neurobiol 19 (1): 151–161. https://doi.org/10.1023/a:1006980911551.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, J., J. Chen, C. Fan, J. Li, J. Lin, T. Yang, and M. Fan. 2017. Alteration of spontaneous brain activity after hypoxia-reoxygenation: a resting-state fMRI study. High Alt Med Biol 18 (1): 20–26. https://doi.org/10.1089/ham.2016.0083.

    Article  PubMed  Google Scholar 

  22. Caplan, L.R. 1996. Diabetes and brain ischemia. Diabetes 45 (Suppl 3): S95–S97. https://doi.org/10.2337/diab.45.3.s95.

    Article  CAS  PubMed  Google Scholar 

  23. Cho, C.H., H. Jang, M. Lee, H. Kang, H.J. Heo, and D.O. Kim. 2017. Sea Buckthorn (Hippophae rhamnoides L.) leaf extracts protect neuronal PC-12 cells from oxidative stress. J Microbiol Biotechnol 27 (7): 1257–1265. https://doi.org/10.4014/jmb.1704.04033.

    Article  CAS  Google Scholar 

  24. Zhang, S., Y. Qi, Y. Xu, X. Han, J. Peng, K. Liu, and C.K. Sun. 2013. Protective effect of flavonoid-rich extract from Rosa laevigata Michx on cerebral ischemia-reperfusion injury through suppression of apoptosis and inflammation. Neurochem Int 63 (5): 522–532. https://doi.org/10.1016/j.neuint.2013.08.008.

    Article  CAS  PubMed  Google Scholar 

  25. Nishimura, Y., M. Ueki, M. Imanishi, S. Tomita, M. Ueno, J. Morishita, and T. Nishiyama. 2017. Reoxygenation with 100% oxygen following hypoxia in mice causes apoptosis. Shock 48 (5): 590–594. https://doi.org/10.1097/SHK.0000000000000891.

    Article  PubMed  Google Scholar 

  26. Xu, Y., C. Tang, S. Tan, J. Duan, H. Tian, and Y. Yang. 2020. Cardioprotective effect of isorhamnetin against myocardial ischemia reperfusion (I/R) injury in isolated rat heart through attenuation of apoptosis. J Cell Mol Med 24 (11): 6253–6262. https://doi.org/10.1111/jcmm.15267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, J.J., J.Q. Song, S.Y. Pan, and K. Wang. 2016. Treatment with isorhamnetin protects the brain against ischemic injury in mice. Neurochem Res 41 (8): 1939–1948. https://doi.org/10.1007/s11064-016-1904-2.

    Article  CAS  PubMed  Google Scholar 

  28. Minutoli, L., D. Puzzolo, M. Rinaldi, N. Irrera, H. Marini, V. Arcoraci, A. Bitto, G. Crea, A. Pisani, F. Squadrito, V. Trichilo, D. Bruschetta, A. Micali, and D. Altavilla. 2016. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev 2016: 2183026–2183010. https://doi.org/10.1155/2016/2183026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coimbra-Costa, D., N. Alva, M. Duran, T. Carbonell, and R. Rama. 2017. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol 12: 216–225. https://doi.org/10.1016/j.redox.2017.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi, S., S. Lei, C. Tang, K. Wang, and Z. Xia. 2019. Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway. Biosci Rep 39 (1). https://doi.org/10.1042/BSR20181614.

  31. Zhang, B., M. Zhai, B. Li, Z. Liu, K. Li, L. Jiang, M. Zhang, W. Yi, J. Yang, D. Yi, H. Liang, Z. Jin, W. Duan, and S. Yu. 2018. Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway. Oxid Med Cell Longev 2018: 3159801–3159816. https://doi.org/10.1155/2018/3159801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao, T.T., T.L. Yang, L. Gong, and P. Wu. 2018. Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes. Gene 666: 92–99. https://doi.org/10.1016/j.gene.2018.05.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rongfu Wang raised the concept. Yuqin Wu, Lin Fan, and Yun Wang collected the data. Yuqin Wu and Jing Ding analyzed and interpreted the data. Rongfu Wang and Yuqin Wu generated the manuscript. All authors have read the final version of the manuscript.

Corresponding author

Correspondence to Rongfu Wang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors agree to submit the final version of manuscript for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Fan, L., Wang, Y. et al. Isorhamnetin Alleviates High Glucose-Aggravated Inflammatory Response and Apoptosis in Oxygen-Glucose Deprivation and Reoxygenation-Induced HT22 Hippocampal Neurons Through Akt/SIRT1/Nrf2/HO-1 Signaling Pathway. Inflammation 44, 1993–2005 (2021). https://doi.org/10.1007/s10753-021-01476-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01476-1

Key Words

Navigation