Skip to main content

Advertisement

Log in

TNF Production in Activated RBL-2H3 Cells Requires Munc13-4

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Mast cell activation triggers intricate signaling pathways that promote the expression and/or release of a wide range of mediators including tumor necrosis factor (TNF; also known as TNFα). In this study, we investigated the connection between TNF secretion and TNF production, exploiting RBL-2H3 cells (a tumor analog of mucosal mast cells) that are depleted of Munc13-4, a crucial component of the mast cell exocytic machinery. We showed that antigen/IgE elicited robust TNF production in RBL-2H3 cells, but not in Munc13-4 knockout cells. The production defect was corrected when Munc13-4 was reintroduced into the knockout cell line, suggesting that the phenotype was not caused by any secondary effect derived from the knockout approach. Furthermore, pre-incubation of RBL-2H3 cells with R-7050, an antagonist of TNF receptor-dependent signaling, was shown to block TNF production without inhibiting TNF release. These observations provide fresh evidence for a robust feed-back loop to boost TNF production in activated mast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rao, K.N., and M.A. Brown. 2008. Mast cells: multifaceted immune cells with diverse roles in health and disease. Annals of the New York Academy of Sciences 1143: 83–104.

    Article  CAS  PubMed  Google Scholar 

  2. Gilfillan, A.M., and M.A. Beaven. 2011. Regulation of mast cell responses in health and disease. Critical Reviews in Immunology 31 (6): 475–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sedger, L.M., and M.F. McDermott. 2014. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine & Growth Factor Reviews 25 (4): 453–472.

    Article  CAS  Google Scholar 

  4. Reuter, S., A. Heinz, M. Sieren, R. Wiewrodt, E.W. Gelfand, M. Stassen, R. Buhl, and C. Taube. 2008. Mast cell-derived tumour necrosis factor is essential for allergic airway disease. The European Respiratory Journal 31 (4): 773–782.

    Article  CAS  PubMed  Google Scholar 

  5. Sandler, C., K.A. Lindstedt, S. Joutsiniemi, J. Lappalainen, T. Juutilainen, J. Kolah, P.T. Kovanen, and K.K. Eklund. 2007. Selective activation of mast cells in rheumatoid synovial tissue results in production of TNF-alpha, IL-1beta and IL-1Ra. Inflammation Research 56 (6): 230–239.

    Article  CAS  PubMed  Google Scholar 

  6. Echtenacher, B., D.N. Mannel, and L. Hultner. 1996. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381 (6577): 75–77.

    Article  CAS  PubMed  Google Scholar 

  7. Malaviya, R., T. Ikeda, E. Ross, and S.N. Abraham. 1996. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381 (6577): 77–80.

    Article  CAS  PubMed  Google Scholar 

  8. Aoki, R., T. Kawamura, F. Goshima, Y. Ogawa, S. Nakae, A. Nakao, K. Moriishi, Y. Nishiyama, and S. Shimada. 2013. Mast cells play a key role in host defense against herpes simplex virus infection through TNF-alpha and IL-6 production. The Journal of Investigative Dermatology 133 (9): 2170–2179.

  9. Aggarwal, B.B. 2003. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Reviews. Immunology 3 (9): 745–756.

    Article  CAS  PubMed  Google Scholar 

  10. Varfolomeev, E., and D. Vucic. 2018. Intracellular regulation of TNF activity in health and disease. Cytokine 101: 26–32.

    Article  CAS  PubMed  Google Scholar 

  11. Carswell, E.A., L.J. Old, R.L. Kassel, S. Green, N. Fiore, and B. Williamson. 1975. An endotoxin-induced serum factor that causes necrosis of tumors. Proceedings of the National Academy of Sciences of the United States of America 72 (9): 3666–3670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohno, I., Y. Tanno, K. Yamauchi, and T. Takishima. 1990. Gene expression and production of tumour necrosis factor by a rat basophilic leukaemia cell line (RBL-2H3) with IgE receptor triggering. Immunology 70 (1): 88–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kalesnikoff, J., and S.J. Galli. 2008. New developments in mast cell biology. Nature Immunology 9 (11): 1215–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Draber, P., I. Halova, I. Polakovicova, and T. Kawakami. 2016. Signal transduction and chemotaxis in mast cells. European Journal of Pharmacology 778: 11–23.

    Article  CAS  PubMed  Google Scholar 

  15. Rizo, J., and J. Xu. 2015. The synaptic vesicle release machinery. Annual Review of Biophysics 44: 339–367.

    Article  CAS  PubMed  Google Scholar 

  16. Lai, Y., et al. 2014. Synaptotagmin 1 and Ca2+ drive trans SNARE zippering. Scientific Reports 4: 4575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gilfillan, A.M., and J. Rivera. 2009. The tyrosine kinase network regulating mast cell activation. Immunological Reviews 228 (1): 149–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ali, K., A. Bilancio, M. Thomas, W. Pearce, A.M. Gilfillan, C. Tkaczyk, N. Kuehn, A. Gray, J. Giddings, E. Peskett, R. Fox, I. Bruce, C. Walker, C. Sawyer, K. Okkenhaug, P. Finan, and B. Vanhaesebroeck. 2004. Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 431 (7011): 1007–1011.

    Article  CAS  PubMed  Google Scholar 

  19. Cantley, L.C. 2002. The phosphoinositide 3-kinase pathway. Science 296 (5573): 1655–1657.

    Article  CAS  PubMed  Google Scholar 

  20. Rivera, J., and A.M. Gilfillan. 2006. Molecular regulation of mast cell activation. The Journal of Allergy and Clinical Immunology 117 (6): 1214–1225 quiz 1226.

    Article  CAS  PubMed  Google Scholar 

  21. Hsia, B.J., J.G. Ledford, E.N. Potts-Kant, V.S. Nikam, N.L. Lugogo, W.M. Foster, M. Kraft, S.N. Abraham, and J.R. Wright. 2012. Mast cell TNF receptors regulate responses to Mycoplasma pneumoniae in surfactant protein A (SP-A)-/- mice. The Journal of Allergy and Clinical Immunology 130 (1): 205–214 e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coward, W.R., et al. 2002. NF-kappa B and TNF-alpha: a positive autocrine loop in human lung mast cells? Journal of Immunology 169 (9): 5287–5293.

    Article  Google Scholar 

  23. Woo, S.S., D.J. James, and T.F. Martin. 2017. Munc13-4 functions as a Ca(2+) sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles. Molecular Biology of the Cell 28 (6): 792–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lai, Y., U.B. Choi, J. Leitz, H.J. Rhee, C. Lee, B. Altas, M. Zhao, R.A. Pfuetzner, A.L. Wang, N. Brose, J. Rhee, and A.T. Brunger. 2017. Molecular mechanisms of synaptic vesicle priming by Munc13 and Munc18. Neuron 95 (3): 591–607 e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bin, N.R., et al. 2018. C2 domains of Munc13-4 are crucial for Ca(2+)-dependent degranulation and cytotoxicity in NK cells. Journal of Immunology 201 (2): 700–713.

    Article  CAS  Google Scholar 

  26. Suzuki, K., and I.M. Verma. 2008. Phosphorylation of SNAP-23 by IkappaB kinase 2 regulates mast cell degranulation. Cell 134 (3): 485–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iwaki, S., M. Ogasawara, R. Kurita, O. Niwa, K. Tanizawa, Y. Ohashi, and K. Maeyama. 2002. Real-time monitoring of histamine released from rat basophilic leukemia (RBL-2H3) cells with a histamine microsensor using recombinant histamine oxidase. Analytical Biochemistry 304 (2): 236–243.

    Article  CAS  PubMed  Google Scholar 

  28. Wernersson, S., and G. Pejler. 2014. Mast cell secretory granules: armed for battle. Nature Reviews. Immunology 14 (7): 478–494.

    Article  CAS  PubMed  Google Scholar 

  29. Pelletier, C., C. Guérin-Marchand, B. Iannascoli, F. Marchand, B. David, A. Weyer, and U. Blank. 1998. Specific signaling pathways in the regulation of TNF-alpha mRNA synthesis and TNF-alpha secretion in RBL-2H3 mast cells stimulated through the high affinity IgE receptor. Inflammation Research 47 (12): 493–500.

    Article  CAS  PubMed  Google Scholar 

  30. Gao, Y., B. Xu, P. Zhang, Y. He, X. Liang, J. Liu, and J. Li. 2017. TNF-alpha regulates mast cell functions by inhibiting cell degranulation. Cellular Physiology and Biochemistry 44 (2): 751–762.

    Article  PubMed  Google Scholar 

  31. Gururaja, T.L., S. Yung, R. Ding, J. Huang, X. Zhou, J. McLaughlin, S. Daniel-Issakani, R. Singh, R.D. Cooper, D.G. Payan, E.S. Masuda, and T. Kinoshita. 2007. A class of small molecules that inhibit TNFalpha-induced survival and death pathways via prevention of interactions between TNFalphaRI, TRADD, and RIP1. Chemistry & Biology 14 (10): 1105–1118.

    Article  CAS  Google Scholar 

  32. Nakano, H., and H. Ushio. 2011. An unexpected role for autophagy in degranulation of mast cells. Autophagy 7 (6): 657–659.

    Article  CAS  PubMed  Google Scholar 

  33. Ushio, H., T. Ueno, Y. Kojima, M. Komatsu, S. Tanaka, A. Yamamoto, Y. Ichimura, J. Ezaki, K. Nishida, S. Komazawa-Sakon, F. Niyonsaba, T. Ishii, T. Yanagawa, E. Kominami, H. Ogawa, K. Okumura, and H. Nakano. 2011. Crucial role for autophagy in degranulation of mast cells. The Journal of Allergy and Clinical Immunology 127 (5): 1267–1276 e6.

    Article  CAS  PubMed  Google Scholar 

  34. Yuan, Y., D. Ding, N. Zhang, Z. Xia, J. Wang, H. Yang, F. Guo, and B. Li. 2018. TNF-alpha induces autophagy through ERK1/2 pathway to regulate apoptosis in neonatal necrotizing enterocolitis model cells IEC-6. Cell Cycle 17 (11): 1390–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamamoto, A., Y. Tagawa, T. Yoshimori, Y. Moriyama, R. Masaki, and Y. Tashiro. 1998. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Structure and Function 23 (1): 33–42.

    Article  CAS  PubMed  Google Scholar 

  36. Corona, A.K., H.M. Saulsbery, A.F. Corona Velazquez, and W.T. Jackson. 2018. Enteroviruses remodel autophagic trafficking through regulation of host SNARE proteins to promote virus replication and cell exit. Cell Reports 22 (12): 3304–3314.

    Article  CAS  PubMed  Google Scholar 

  37. Ronkina, N., M.B. Menon, J. Schwermann, C. Tiedje, E. Hitti, A. Kotlyarov, and M. Gaestel. 2010. MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Biochemical Pharmacology 80 (12): 1915–1920.

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez-Teran, B., et al. 2013. Eukaryotic elongation factor 2 controls TNF-alpha translation in LPS-induced hepatitis. The Journal of Clinical Investigation 123 (1): 164–178.

    Article  CAS  PubMed  Google Scholar 

  39. Pashenkov, M.V., et al. 2017. The role of the p38-MNK-eIF4E signaling axis in TNF production downstream of the NOD1 receptor. Journal of Immunology 198 (4): 1638–1648.

    Article  CAS  Google Scholar 

  40. Xaus, J., M. Comalada, A.F. Valledor, J. Lloberas, F. López-Soriano, J.M. Argilés, C. Bogdan, and A. Celada. 2000. LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-alpha. Blood 95 (12): 3823–3831.

    Article  CAS  PubMed  Google Scholar 

  41. Woska, J.R., Jr., and M.E. Gillespie. 2011. Small-interfering RNA-mediated identification and regulation of the ternary SNARE complex mediating RBL-2H3 mast cell degranulation. Scandinavian Journal of Immunology 73 (1): 8–17.

    Article  CAS  PubMed  Google Scholar 

  42. Paumet, F., et al. 2000. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment. Journal of Immunology 164 (11): 5850–5857.

    Article  CAS  Google Scholar 

  43. Tiwari, N., et al. 2008. VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways. Blood 111 (7): 3665–3674.

    Article  CAS  PubMed  Google Scholar 

  44. Tiwari, N., et al. 2009. Increased formation of VAMP-3-containing SNARE complexes in mast cells from VAMP-8 deficient cells. Inflammation Research 58 (Suppl 1): 13–14.

    Article  PubMed  Google Scholar 

  45. Brochetta, C., et al. 2014. Munc18-2 and syntaxin 3 control distinct essential steps in mast cell degranulation. Journal of Immunology 192 (1): 41–51.

    Article  CAS  Google Scholar 

  46. Sander, L.E., S.P. Frank, S. Bolat, U. Blank, T. Galli, H. Bigalke, S.C. Bischoff, and A. Lorentz. 2008. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells. European Journal of Immunology 38 (3): 855–863.

    Article  CAS  PubMed  Google Scholar 

  47. Hibi, T., N. Hirashima, and M. Nakanishi. 2000. Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes. Biochemical and Biophysical Research Communications 271 (1): 36–41.

    Article  CAS  PubMed  Google Scholar 

  48. Guo, Z., C. Turner, and D. Castle. 1998. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell 94 (4): 537–548.

    Article  CAS  PubMed  Google Scholar 

  49. Xu, H., M.G. Arnold, and S.V. Kumar. 2015. Differential effects of Munc18s on multiple degranulation-relevant trans-SNARE complexes. PLoS One 10 (9): e0138683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Puri, N., and P.A. Roche. 2008. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proceedings of the National Academy of Sciences of the United States of America 105 (7): 2580–2585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boddul, S.V., J. Meng, J.O. Dolly, and J. Wang. 2014. SNAP-23 and VAMP-3 contribute to the release of IL-6 and TNFalpha from a human synovial sarcoma cell line. The FEBS Journal 281 (3): 750–765.

    Article  CAS  PubMed  Google Scholar 

  52. Xu, H., N.R. Bin, and S. Sugita. 2018. Diverse exocytic pathways for mast cell mediators. Biochemical Society Transactions 46 (2): 235–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moon, T.C., A.D. Befus, and M. Kulka. 2014. Mast cell mediators: their differential release and the secretory pathways involved. Frontiers in Immunology 5: 569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Institute of Allergy and Infectious Diseases Grant 1R15AI133430-01 to H.X. and S.S, and by the Mississippi INBRE, which was funded by an Institutional Development Award from the National Institute of General Medical Sciences under grant no. P20GM103476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayo, T.E., Adhikari, P., Sugita, S. et al. TNF Production in Activated RBL-2H3 Cells Requires Munc13-4. Inflammation 43, 744–751 (2020). https://doi.org/10.1007/s10753-019-01161-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01161-4

KEY WORDS

Navigation