Skip to main content

Advertisement

Log in

Tacrolimus Inhibits TNF-α/IL-17A-Produced pro-Inflammatory Effect on Human Keratinocytes by Regulating IκBζ

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Psoriasis is a chronic autoimmune disease that is predominantly mediated by T-lymphocytes and keratinocytes. Tacrolimus is T cell-targeted immunosuppression drug that has been widely used in topical therapy of psoriasis; however, the pharmacologic effect of tacrolimus on human keratinocytes has not been fully clarified. This study aimed to investigate the potential regulatory effect of tacrolimus on TNF-α/ IL-17A-costimulated human keratinocytes in the mimic psoriatic microenvironment. The cultured normal human keratinocytes (NHKs) were divided into the following groups: control, TNF-α/IL-17A, tacrolimus, and TNF-α/IL-17A + tacrolimus. Cultured cells and supernatant were collected after 24 h, and then real-time quantitative PCR, western blot, and ELISA analysis were performed. Foreskin tissues were treated by using TNF-α, IL-17A, and tacrolimus 0.03% ointment and then cultured for 24 h, and immunohistochemistry was performed. NHKs expressed significant IL-36γ, CCL-20, IL-1β, S100-A9, and CXCL-1 mRNA after TNF-α/IL-17A treatment. Tacrolimus significantly inhibited TNF-α/IL-17A-induced IL-36γ, CCL-20, IL-1β, and S100-A9 expression at gene level and IL-36γ and CCL-20 expression at protein level. We further discovered TNF-α/IL-17A induced significant IκBζ mRNA and protein expression in NHKs, which could be inhibited by tacrolimus. Tacrolimus can inhibit pro-inflammatory synergistic action of TNF-α/IL-17A on human keratinocytes by regulating IκBζ expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnston, A., X. Xing, L. Wolterink, D.H. Barnes, Z. Yin, L. Reingold, J.M. Kahlenberg, P.W. Harms, and J.E. Gudjonsson. 2017. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. The Journal of Allergy and Clinical Immunology 140: 109–120.

    Article  CAS  PubMed  Google Scholar 

  2. Baliwag, J., D.H. Barnes, and A. Johnston. 2015. Cytokines in psoriasis. Cytokine 73: 342–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kirkham, B.W., A. Kavanaugh, and K. Reich. 2014. Interleukin-17A: A unique pathway in immune-mediated diseases: Psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology 141: 133–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sedger, L.M., and M.F. McDermott. 2014. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine & Growth Factor Reviews 25: 453–472.

    Article  CAS  Google Scholar 

  5. Bissonnette, R., T. Luger, D. Thaçi, et al. 2018. Secukinumab demonstrates high sustained efficacy and a favourable safety profile in patients with moderate-to-severe psoriasis through 5 years of treatment (SCULPTURE extension study). Journal of the European Academy of Dermatology and Venereology 32: 1507–1514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. No, D.J., M. Amin, T. Bhutani, and J.J. Wu. 2018. A systematic review of active comparator controlled clinical trials in patients with moderate-to-severe psoriasis. The Journal of Dermatological Treatment 29: 467–474.

    Article  PubMed  Google Scholar 

  7. Blauvelt, A. 2016. Ixekizumab: A new anti-IL-17A monoclonal antibody therapy for moderate-to severe plaque psoriasis. Expert Opinion on Biological Therapy 16: 255–263.

    Article  CAS  PubMed  Google Scholar 

  8. Chiricozzi, A., E. Guttman-Yassky, M. Suárez-Fariñas, K.E. Nograles, S. Tian, I. Cardinale, S. Chimenti, and J.G. Krueger. 2011. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. The Journal of Investigative Dermatology 131: 677–687.

    Article  CAS  PubMed  Google Scholar 

  9. Li, B., L.C. Tsoi, W.R. Swindell, et al. 2014. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. The Journal of Investigative Dermatology 134: 1828–1838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D'Erme, A.M., D. Wilsmann-Theis, J. Wagenpfeil, et al. 2015. IL-36γ (IL-1F9) is a biomarker for psoriasis skin lesions. The Journal of Investigative Dermatology 135: 1025–1032.

    Article  CAS  PubMed  Google Scholar 

  11. Schonthaler, H.B., J. Guinea-Viniegra, S.K. Wculek, et al. 2013. S100A8-S100A9 protein complex mediates psoriasis by regulating the expression of complement factor C3. Immunity 39: 1171–1181.

    Article  CAS  PubMed  Google Scholar 

  12. Foster, A.M., J. Baliwag, C.S. Chen, et al. 2014. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. Journal of Immunology 192: 6053–6061.

    Article  CAS  Google Scholar 

  13. Nghiem, P., G. Pearson, and R.G. Langley. 2002. Tacrolimus and pimecrolimus: From clever prokaryotes to inhibiting calcineurin and treating atopic dermatitis. Journal of the American Academy of Dermatology 46: 228–241.

    Article  PubMed  Google Scholar 

  14. Tsuda, K., K. Yamanaka, H. Kitagawa, et al. 2012. Calcineurin inhibitors suppress cytokine production from memory T cells and differentiation of naïve T cells into cytokine-producing mature T cells. PLoS One 7: e31465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ming, M., B. Zhao, L. Qiang, and Y.Y. He. 2015. Effect of immunosuppressants tacrolimus and mycophenolate mofetil on the keratinocyte UVB response. Photochemistry and Photobiology 91: 242–247.

    Article  CAS  PubMed  Google Scholar 

  16. Wu, C.S., C.C. Lan, H.Y. Kuo, C.Y. Chai, W.T. Chen, and G.S. Chen. 2012. Differential regulation of nuclear factor-kappa B subunits on epidermal keratinocytes by ultraviolet B and tacrolimus. The Kaohsiung Journal of Medical Sciences 28: 577–585.

    Article  PubMed  Google Scholar 

  17. Xu, J., Y. Feng, G. Song, et al. 2018. Tacrolimus reverses UVB irradiation-induced epidermal Langerhans cell reduction by inhibiting TNF-α secretion in keratinocytes via regulation of NF-κB/p65. Frontiers in Pharmacology 9: 67.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zare, S., M.A. Zarei, T. Ghadimi, F. Fathi, A. Jalili, and M.S. Hakhamaneshi. 2014. Isolation, cultivation and transfection of human keratinocytes. Cell Biology International 38: 444–451.

    Article  CAS  PubMed  Google Scholar 

  19. Yin, Z., J. Xu, Z. Zhang, and D. Luo. 2012. Effects of topical pimecrolimus 1% on high-dose ultraviolet B-irradiated epidermal Langerhans cells. International Immunopharmacology 14: 635–640.

    Article  PubMed  Google Scholar 

  20. Yin, L., Y. Hu, J. Xu, J. Guo, J. Tu, and Z. Yin. 2017. Ultraviolet B inhibits IL-17A/TNF-α-stimulated activation of human dermal fibroblasts by decreasing the expression of IL-17RA and IL-17RC on fibroblasts. Frontiers in Immunology 8: 91.

    PubMed Central  PubMed  Google Scholar 

  21. Carrier, Y., H.L. Ma, H.E. Ramon, et al. 2011. Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: Implications in psoriasis pathogenesis. The Journal of Investigative Dermatology 131: 2428–2437.

    Article  CAS  PubMed  Google Scholar 

  22. Shen, F., and S.L. Gaffen. 2008. Structure-function relationships in the IL-17 receptor: Implications for signal transduction and therapy. Cytokine 41: 92–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, X.J., Y.D. Kang, L. Xiao, et al. 2010. Effects and mechanisms of tacrolimus on development of murine Th17 cells. Transplantation Proceedings 42: 3779–3783.

    Article  CAS  PubMed  Google Scholar 

  24. Nishio, H., K. Matsui, H. Tsuji, A. Tamura, and K. Suzuki. 2000. Immunolocalization of calcineurin and FKBP12, the FK506-binding protein, in Hassall's corpuscles of human thymus and epidermis. Histochemistry and Cell Biology 114: 9–14.

    Article  CAS  PubMed  Google Scholar 

  25. Al-Daraji, W.I., K.R. Grant, K. Ryan, A. Saxton, and N.J. Reynolds. 2002. Localization of calcineurin/NFAT in human skin and psoriasis and inhibition of calcineurin/NFAT activation in human keratinocytes by cyclosporin a. The Journal of Investigative Dermatology 118: 779–788.

    Article  CAS  PubMed  Google Scholar 

  26. Kaplan, A., H. Matsue, A. Shibaki, T. Kawashima, H. Kobayashi, and A. Ohkawara. 1995. The effects of cyclosporin a and FK506 on proliferation and IL-8 production of cultured human keratinocytes. Journal of Dermatological Science 10: 130–138.

    Article  CAS  PubMed  Google Scholar 

  27. Johansen, C., M. Mose, P. Ommen, et al. 2015. IκBζ is a key driver in the development of psoriasis. Proceedings of the National Academy of Sciences of the United States of America 112: E5825–E5833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Müller, A., A. Hennig, S. Lorscheid, P. Grondona, K. Schulze-Osthoff, S. Hailfinger, and D. Kramer. 2018. IκBζ is a key transcriptional regulator of IL-36-driven psoriasis-related gene expression in keratinocytes. Proceedings of the National Academy of Sciences of the United States of America 115: 10088–10093.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Johnston, A., X. Xing, A.M. Guzman, et al. 2011. IL-1F5, -F6, -F8, and -F9: A novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression. Journal of Immunology 186: 2613–2622.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81673062).

Author information

Authors and Affiliations

Authors

Contributions

YH and JG were responsible for cell and tissue culture, qRT-PCR, and western blot. LY was responsible for ELISA analysis and immunohistochemistry. JT was responsible for data analysis. ZY was responsible for the quality of the overall manuscript. YH, JG, and LY contributed equally to this work.

Corresponding author

Correspondence to ZhiQiang Yin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

Real-time quantitative PCR of pro-inflammatory cytokines in NHKs after 30 min and 2 h. statistical significance indicated *P < 0.05 and ***P < 0.001. Abbreviation: NHKs, normal human keratinocytes; TNF-α, tumor necrosis factor α; IL-17A, interleukin-17A; IL-36γ, interleukin-36γ; CCL20, chemokine (C-C motif) ligand 20; IL-1β, Interleukin-1β; S100-A9, S100 calcium-binding protein A9; CXCL1, chemokine (C-X-C motif) ligand 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Guo, J., Yin, L. et al. Tacrolimus Inhibits TNF-α/IL-17A-Produced pro-Inflammatory Effect on Human Keratinocytes by Regulating IκBζ. Inflammation 43, 692–700 (2020). https://doi.org/10.1007/s10753-019-01151-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01151-6

Key Words

Navigation