Skip to main content

Advertisement

Log in

The Effects of Neurokinin-1 Receptor Antagonist in an Experimental Autoimmune Cystitis Model Resembling Bladder Pain Syndrome/Interstitial Cystitis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

To identify the effects of the neurokinin-1 receptor (NK1R) antagonist aprepitant in treating pelvic pain, micturition symptoms, and bladder inflammation in mice with experimental autoimmune cystitis (EAC) similar to bladder pain syndrome/interstitial cystitis (BPS/IC). Female C57BL/6 mice were divided into the following three groups: normal control, EAC, and EAC plus aprepitant. EAC was induced in mice by duplicate immunization with bladder homogenate. In the EAC model group, EAC mice were given PBS by gavage once a day during the fourth week. In the EAC plus aprepitant group, aprepitant was administered instead of PBS in the same way. After 4 weeks, pelvic pain threshold and urination habits of mice were analyzed, as well as the bladder weight to body weight ratio, and histologic assessment of the expression of IL-1β, TNF-α, intercellular adhesion molecule 1 (ICAM-1), and NK1R in bladder tissue. EAC mice mimicked the phenotype and pathophysiologic lesions of BPS/IC well. Compared to PBS-treated EAC mice, the mice treated with aprepitant exhibited higher pain threshold values, less number of total urine spots or small urine spots, lower bladder weight to body weight ratio, and reduced bladder inflammation with less mast cell infiltration and decreased expressions of IL-1β, TNF-α, and ICAM-1 in bladder tissue. There was no difference in NK1R expression in bladders treated with or without aprepitant. The NK1R antagonist aprepitant relieved pelvic pain, urinary symptoms, and bladder inflammation in EAC mice. This indicated that NK1R may be a novel therapeutic target in BPS/IC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NK1R:

neurokinin 1 receptor

BPS:

bladder pain syndrome

IC:

interstitial cystitis

EAC:

experimental autoimmune cystitis

CFA:

complete Freund’s adjuvant

IFA:

incomplete Freund’s adjuvant

PBS:

phosphate-buffered saline

IL-1β:

interleukin 1β

TNF-α:

tumor necrosis factor α

ICAM-1:

intercellular adhesion molecule 1

SP:

substance P

References

  1. Abbadie, C., J.L. Brown, P.W. Mantyh, and A.I. Basbaum. 1996. Spinal cord substance P receptor immunoreactivity increases in both inflammatory and nerve injury models of persistent pain. Neuroscience 70 (1): 201–209.

    Article  CAS  PubMed  Google Scholar 

  2. Abrams, P., L. Cardozo, M. Fall, D. Griffiths, P. Rosier, U. Ulmsten, et al. 2002. The standardisation of terminology of lower urinary tract function: Report from the standardisation sub-committee of the international continence society. Neurourology and Urodynamics 21 (2): 167–178.

    Article  PubMed  Google Scholar 

  3. Ansel, J.C., J.R. Brown, D.G. Payan, and M.A. Brown. 1993. Substance P selectively activates TNF-alpha gene expression in murine mast cells. Journal of Immunology 150 (10): 4478–4485.

    CAS  Google Scholar 

  4. Bogart, L.M., S.H. Berry, and J.Q. Clemens. 2007. Symptoms of interstitial cystitis, painful bladder syndrome and similar diseases in women: A systematic review. The Journal of Urology 177 (2): 450–456. https://doi.org/10.1016/j.juro.2006.09.032.

    Article  PubMed  Google Scholar 

  5. Candenas, L., A. Lecci, F.M. Pinto, E. Patak, C.A. Maggi, and J.N. Pennefather. 2005. Tachykinins and tachykinin receptors: Effects in the genitourinary tract. Life Sciences 76 (8): 835–862. https://doi.org/10.1016/j.lfs.2004.10.004.

    Article  CAS  PubMed  Google Scholar 

  6. Chou, L.W., J. Wang, P.L. Chang, and Y.L. Hsieh. 2011. Hyaluronan modulates accumulation of hypoxia-inducible factor-1 alpha, inducible nitric oxide synthase, and matrix metalloproteinase-3 in the synovium of rat adjuvant-induced arthritis model. Arthritis Research & Therapy 13 (3): R90. https://doi.org/10.1186/ar3365.

    Article  CAS  Google Scholar 

  7. Colaco, M., and R. Evans. 2015. Current guidelines in the management of interstitial cystitis. Translational Andrology and Urology 4 (6): 677–683. https://doi.org/10.3978/j.issn.2223-4683.2015.11.03.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frenkl, T.L., H. Zhu, T. Reiss, O. Seltzer, E. Rosenberg, and S. Green. 2010. A multicenter, double-blind, randomized, placebo controlled trial of a neurokinin-1 receptor antagonist for overactive bladder. The Journal of Urology 184 (2): 616–622. https://doi.org/10.1016/j.juro.2010.03.147.

    Article  CAS  PubMed  Google Scholar 

  9. Green, M., A. Filippou, G. Sant, and T.C. Theoharides. 2004. Expression of intercellular adhesion molecules in the bladder of patients with interstitial cystitis. Urology 63 (4): 688–693. https://doi.org/10.1016/j.urology.2003.11.022.

    Article  CAS  PubMed  Google Scholar 

  10. Green, S.A., A. Alon, J. Ianus, K.S. McNaughton, C.A. Tozzi, and T.F. Reiss. 2006. Efficacy and safety of a neurokinin-1 receptor antagonist in postmenopausal women with overactive bladder with urge urinary incontinence. The Journal of Urology 176 (6 Pt 1): 2535–2540; discussion 2540. https://doi.org/10.1016/j.juro.2006.08.018.

    Article  CAS  PubMed  Google Scholar 

  11. Jin, X.W., B.K. Liu, X. Zhang, Z.H. Zhao, and Y. Shao. 2017. Establishment of a novel autoimmune experimental model of bladder pain syndrome/interstitial cystitis in C57BL/6 mice. Inflammation 40 (3): 861–870. https://doi.org/10.1007/s10753-017-0531-7.

    Article  CAS  PubMed  Google Scholar 

  12. Leppilahti, M., P. Hellstrom, and T.L. Tammela. 2002. Effect of diagnostic hydrodistension and four intravesical hyaluronic acid instillations on bladder ICAM-1 intensity and association of ICAM-1 intensity with clinical response in patients with interstitial cystitis. Urology 60 (1): 46–51.

    Article  PubMed  Google Scholar 

  13. Li, P.C., W.C. Chen, L.C. Chang, and S.C. Lin. 2008. Substance P acts via the neurokinin receptor 1 to elicit bronchoconstriction, oxidative stress, and upregulated ICAM-1 expression after oil smoke exposure. American Journal of Physiology. Lung Cellular and Molecular Physiology 294 (5): L912–L920. https://doi.org/10.1152/ajplung.00443.2007.

    Article  CAS  PubMed  Google Scholar 

  14. Moutzouris, D.A., and M.E. Falagas. 2009. Interstitial cystitis: An unsolved enigma. Clinical Journal of the American Society of Nephrology 4 (11): 1844–1857. https://doi.org/10.2215/CJN.02000309.

    Article  PubMed  Google Scholar 

  15. Ogawa, T., O. Ishizuka, T. Ueda, P. Tyagi, M.B. Chancellor, and N. Yoshimura. 2015. Current and emerging drugs for interstitial cystitis/bladder pain syndrome (IC/BPS). Expert Opinion on Emerging Drugs 20 (4): 555–570. https://doi.org/10.1517/14728214.2015.1105216.

    Article  CAS  PubMed  Google Scholar 

  16. Patel, L., and C. Lindley. 2003. Aprepitant--a novel NK1-receptor antagonist. Expert Opinion on Pharmacotherapy 4 (12): 2279–2296. https://doi.org/10.1517/14656566.4.12.2279.

    Article  CAS  PubMed  Google Scholar 

  17. Pazin, C., A.M. de Souza Mitidieri, A.P. Silva, M.B. Gurian, O.B. Poli-Neto, and E.S.J.C. Rosa. 2016. Treatment of bladder pain syndrome and interstitial cystitis: A systematic review. International Urogynecology Journal 27 (5): 697–708. https://doi.org/10.1007/s00192-015-2815-5.

    Article  PubMed  Google Scholar 

  18. Pennefather, J.N., A. Lecci, M.L. Candenas, E. Patak, F.M. Pinto, and C.A. Maggi. 2004. Tachykinins and tachykinin receptors: A growing family. Life Sciences 74 (12): 1445–1463.

    Article  CAS  PubMed  Google Scholar 

  19. Pinto, L.G., T.M. Cunha, S.M. Vieira, H.P. Lemos, W.A. Verri Jr., F.Q. Cunha, and S.H. Ferreira. 2010. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain 148 (2): 247–256. https://doi.org/10.1016/j.pain.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  20. Regauer, S. 2016. Mast cell activation syndrome in pain syndromes bladder pain syndrome/interstitial cystitis and vulvodynia. Translational Andrology and Urology 5 (3): 396–397. https://doi.org/10.21037/tau.2016.03.12.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Seth, A., and J.M. Teichman. 2008. What's new in the diagnosis and management of painful bladder syndrome/interstitial cystitis? Current Urology Reports 9 (5): 349–357.

    Article  PubMed  Google Scholar 

  22. Shao, Y., G.L. Lu, Z.J. Shen, and H.C. He. 2013. Reduction of intercellular adhesion molecule 1 may play a role in anti-inflammatory effect of hyaluronic acid in a rat model of severe non-bacterial cystitis. World Journal of Urology 31 (3): 535–540. https://doi.org/10.1007/s00345-012-0839-8.

    Article  CAS  PubMed  Google Scholar 

  23. Shao, Y., Z.J. Shen, W.B. Rui, and W.L. Zhou. 2010. Intravesical instillation of hyaluronic acid prolonged the effect of bladder hydrodistention in patients with severe interstitial cystitis. Urology 75 (3): 547–550. https://doi.org/10.1016/j.urology.2009.09.078.

    Article  PubMed  Google Scholar 

  24. van der Kleij, H.P., D. Ma, F.A. Redegeld, A.D. Kraneveld, F.P. Nijkamp, and J. Bienenstock. 2003. Functional expression of neurokinin 1 receptors on mast cells induced by IL-4 and stem cell factor. Journal of Immunology 171 (4): 2074–2079.

    Article  Google Scholar 

  25. Wang, X., W. Liu, M. O'Donnell, S. Lutgendorf, C. Bradley, A. Schrepf, and Y. Luo. 2016. Evidence for the role of mast cells in cystitis-associated lower urinary tract dysfunction: A multidisciplinary approach to the study of chronic pelvic pain research network animal model study. PLoS One 11 (12): e0168772. https://doi.org/10.1371/journal.pone.0168772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, Z.Y., P. Wang, and D.E. Bjorling. 2014. Treatment with a cannabinoid receptor 2 agonist decreases severity of established cystitis. The Journal of Urology 191 (4): 1153–1158. https://doi.org/10.1016/j.juro.2013.10.102.

    Article  CAS  PubMed  Google Scholar 

  27. Yu, W., C. Ackert-Bicknell, J.D. Larigakis, B. MacIver, W.D. Steers, G.A. Churchill, et al. 2014. Spontaneous voiding by mice reveals strain-specific lower urinary tract function to be a quantitative genetic trait. American Journal of Physiology. Renal Physiology 306 (11): F1296–F1307. https://doi.org/10.1152/ajprenal.00074.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zacche, M.M., S. Srikrishna, and L. Cardozo. 2015. Novel targeted bladder drug-delivery systems: a review. Research and Reports in Urology 7: 169–178. https://doi.org/10.2147/RRU.S56168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Research Program of Shanghai Municipal Commission of Health and Family Planning (No. 201540146) and the General Programs of the National Natural Science Foundation of China (No. 81270846).

Author information

Authors and Affiliations

Authors

Contributions

BKL: data collection, analysis, and manuscript writing. JXW: protocol development, data collection, and manuscript writing. HZL and XZ: data collection. ZHZ: pathologic evaluation. YS: research design, data analysis, and manuscript editing.

Corresponding author

Correspondence to Yuan Shao.

Ethics declarations

Ethics Statement

All animal experiments were approved by the Animal Care and Use Committee of Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine. Procedures were performed in accordance with the Animal Management Rule of the Ministry of Health, People’s Republic of China (documentation no. 55, 2001).

Competing Interests

No competing interests in this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, BK., Jin, XW., Lu, HZ. et al. The Effects of Neurokinin-1 Receptor Antagonist in an Experimental Autoimmune Cystitis Model Resembling Bladder Pain Syndrome/Interstitial Cystitis. Inflammation 42, 246–254 (2019). https://doi.org/10.1007/s10753-018-0888-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0888-2

KEY WORDS

Navigation