Skip to main content

Advertisement

Log in

Pirfenidone Ointment Modulates the Burn Wound Bed in C57BL/6 Mice by Suppressing Inflammatory Responses

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

An inflammatory response is the normal response to a burn-induced injury. The burn-associated inflammation can lead to further tissue damage as the tissue tries to repair the damage. Prolonged or excessive inflammation is associated with increased fibrosis of burn wounds and the development of hypertrophic scars. The high incidence of hypertrophic scar formation is one of the many challenges to treating deep partial-thickness burns. Prophylactic treatment to improve burn-induced hypertrophic scarring is lacking. For this reason, we evaluated prophylactic treatment of deep partial-thickness burns with pirfenidone in C57BL/6 mice. Pirfenidone is an FDA-approved anti-fibrotic drug for systemic use in the treatment of idiopathic lung fibrosis and other fibrotic disorders. Additionally, pirfenidone has anti-inflammatory activity. We tested treatment efficacy of pirfenidone using a mouse model of deep partial-thickness burns. Inflammatory cytokines including IL-1β, IL-2, IL-6, IL-13, G-CSF, and MIP-1α, along with neutrophil infiltration, were significantly reduced in wounds when mice were treated during the inflammatory phase of burn wound healing. Additionally, pirfenidone significantly reduced expression of αSMA 12 days after the induction of burns and modestly reduced hydroxyproline in 22-day-old burn wounds. Results show that pirfenidone treatment modulated the inflammatory response of the burn wound. The findings in this study indicate that further examination is required to validate the use of pirfenidone for prophylactic treatment to improve long-term outcomes of scarring and contracture in deep partial-thickness burn wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aarabi, S., M.T. Longaker, and G.C. Gurtner. 2007. Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Medicine 4 (9): e234. https://doi.org/10.1371/journal.pmed.0040234.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Armendariz-Borunda, J., I. Lyra-Gonzalez, D. Medina-Preciado, I. Gonzalez-Garcia, D. Martinez-Fong, R.A. Miranda, R. Magana-Castro, et al. 2012. A controlled clinical trial with pirfenidone in the treatment of pathological skin scarring caused by burns in pediatric patients. Annals of Plastic Surgery 68 (1): 22–28. https://doi.org/10.1097/SAP.0b013e31821b6d08.

    Article  CAS  PubMed  Google Scholar 

  3. Bombaro, K.M., L.H. Engrav, G.J. Carrougher, S.A. Wiechman, L. Faucher, B.A. Costa, D.M. Heimbach, F.P. Rivara, and S. Honari. 2003. What is the prevalence of hypertrophic scarring following burns? Burns 29 (4): 299–302.

    Article  Google Scholar 

  4. Chen, L., and L.A. DiPietro. 2017. Toll-like receptor function in acute wounds. Adv Wound Care (New Rochelle) 6 (10): 344–355. https://doi.org/10.1089/wound.2017.0734.

    Article  Google Scholar 

  5. D'Arpa, P., and K.P. Leung. 2017. Toll-like receptor signaling in burn wound healing and scarring. Adv Wound Care (New Rochelle) 6 (10): 330–343. https://doi.org/10.1089/wound.2017.0733.

    Article  Google Scholar 

  6. Doersch, K.M., D.J. DelloStritto, and M.K. Newell-Rogers. 2017. The contribution of interleukin-2 to effective wound healing. Experimental Biology and Medicine (Maywood, N.J.) 242 (4): 384–396. https://doi.org/10.1177/1535370216675773.

    Article  CAS  Google Scholar 

  7. Dorati, R., J.L. Medina, P.P. DeLuca, and K.P. Leung. 2018. Development of a topical 48-H release formulation as an anti-scarring treatment for deep partial-thickness burns. AAPS PharmSciTech 19: 2264–2275. https://doi.org/10.1208/s12249-018-1030-3.

    Article  PubMed  Google Scholar 

  8. Dunkin, C.S., J.M. Pleat, P.H. Gillespie, M.P. Tyler, A.H. Roberts, and D.A. McGrouther. 2007. Scarring occurs at a critical depth of skin injury: precise measurement in a graduated dermal scratch in human volunteers. Plastic and Reconstructive Surgery 119 (6): 1722–1732; discussion 1733-1724. https://doi.org/10.1097/01.prs.0000258829.07399.f0.

    Article  CAS  PubMed  Google Scholar 

  9. Evers, L.H., D. Bhavsar, and P. Mailander. 2010. The biology of burn injury. Experimental Dermatology 19 (9): 777–783. https://doi.org/10.1111/j.1600-0625.2010.01105.x.

    Article  PubMed  Google Scholar 

  10. Finnerty, C.C., M.G. Jeschke, L.K. Branski, J.P. Barret, P. Dziewulski, and D.N. Herndon. 2016. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet 388 (10052): 1427–1436. https://doi.org/10.1016/S0140-6736(16)31406-4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Flores-Contreras, L., A.S. Sandoval-Rodriguez, M.G. Mena-Enriquez, S. Lucano-Landeros, I. Arellano-Olivera, A. Alvarez-Alvarez, M.G. Sanchez-Parada, and J. Armendariz-Borunda. 2014. Treatment with pirfenidone for two years decreases fibrosis, cytokine levels and enhances CB2 gene expression in patients with chronic hepatitis C. BMC Gastroenterology 14: 131. https://doi.org/10.1186/1471-230X-14-131.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gauglitz, G.G., H.C. Korting, T. Pavicic, T. Ruzicka, and M.G. Jeschke. 2011. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Molecular Medicine 17 (1–2): 113–125. https://doi.org/10.2119/molmed.2009.00153.

    Article  CAS  PubMed  Google Scholar 

  13. Gurtner, G.C., S. Werner, Y. Barrandon, and M.T. Longaker. 2008. Wound repair and regeneration. Nature 453 (7193): 314–321. https://doi.org/10.1038/nature07039.

    Article  CAS  Google Scholar 

  14. Hall, C., C. Hardin, C.J. Corkins, A.Z. Jiwani, J. Fletcher, A. Carlsson, and R. Chan. 2017. Pathophysiologic mechanisms and current treatments for cutaneous sequelae of burn wounds. Comprehensive Physiology 8 (1): 371–405. https://doi.org/10.1002/cphy.c170016.

    Article  PubMed  Google Scholar 

  15. Hall, Caroline L., Adrienne R. Wells, and Kai P. Leung. 2018. Pirfenidone reduces profibrotic responses in human dermal myofibroblasts, in vitro. Laboratory Investigation. 98: 640–655. https://doi.org/10.1038/s41374-017-0014-3.

    Article  CAS  PubMed  Google Scholar 

  16. Hamilton, J.A., A.D. Cook, and P.P. Tak. 2016. Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nature Reviews. Drug Discovery 16 (1): 53–70. https://doi.org/10.1038/nrd.2016.231.

    Article  CAS  PubMed  Google Scholar 

  17. Hirano, S., R.S. Rees, and R.R. Gilmont. 2002. MAP kinase pathways involving hsp27 regulate fibroblast-mediated wound contraction. The Journal of Surgical Research 102 (2): 77–84. https://doi.org/10.1006/jsre.2001.6315.

    Article  CAS  PubMed  Google Scholar 

  18. Hsieh, C.H., M. Frink, Y.C. Hsieh, W.H. Kan, J.T. Hsu, M.G. Schwacha, M.A. Choudhry, and I.H. Chaudry. 2008. The role of MIP-1 alpha in the development of systemic inflammatory response and organ injury following trauma hemorrhage. Journal of Immunology 181 (4): 2806–2812.

    Article  CAS  Google Scholar 

  19. Huebener, P., J.P. Pradere, C. Hernandez, G.Y. Gwak, J.M. Caviglia, X. Mu, J.D. Loike, R.E. Jenkins, D.J. Antoine, and R.F. Schwabe. 2015. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. The Journal of Clinical Investigation 125 (2): 539–550. https://doi.org/10.1172/JCI76887.

    Article  PubMed  Google Scholar 

  20. Ipaktchi, K., A. Mattar, A.D. Niederbichler, L.M. Hoesel, M.R. Hemmila, G.L. Su, D.G. Remick, S.C. Wang, and S. Arbabi. 2006. Topical p38MAPK inhibition reduces dermal inflammation and epithelial apoptosis in burn wounds. Shock 26 (2): 201–209. https://doi.org/10.1097/01.shk.0000225739.13796.f2.

    Article  CAS  PubMed  Google Scholar 

  21. Livne, A., and B. Geiger. 2016. The inner workings of stress fibers - from contractile machinery to focal adhesions and back. Journal of Cell Science 129 (7): 1293–1304. https://doi.org/10.1242/jcs.180927.

    Article  CAS  PubMed  Google Scholar 

  22. Martin, P., D. D'Souza, J. Martin, R. Grose, L. Cooper, R. Maki, and S.R. McKercher. 2003. Wound healing in the PU.1 null mouse--tissue repair is not dependent on inflammatory cells. Current Biology 13 (13): 1122–1128.

    Article  CAS  Google Scholar 

  23. Medina, J.L., A.B. Fourcaudot, E.A. Sebastian, R. Shankar, A.W. Brown, and K.P. Leung. 2018. Standardization of deep partial-thickness scald burns in C57BL/6 mice. Int J Burns Trauma 8 (2): 26–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Oriente, A., N.S. Fedarko, S.E. Pacocha, S.K. Huang, L.M. Lichtenstein, and D.M. Essayan. 2000. Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. The Journal of Pharmacology and Experimental Therapeutics 292 (3): 988–994.

    CAS  PubMed  Google Scholar 

  25. Penn, J.W., A.O. Grobbelaar, and K.J. Rolfe. 2012. The role of the TGF-beta family in wound healing, burns and scarring: a review. Int J Burns Trauma 2 (1): 18–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Qian, L.W., A.B. Fourcaudot, K. Yamane, T. You, R.K. Chan, and K.P. Leung. 2016. Exacerbated and prolonged inflammation impairs wound healing and increases scarring. Wound Repair and Regeneration 24 (1): 26–34. https://doi.org/10.1111/wrr.12381.

    Article  PubMed  Google Scholar 

  27. Rani, M., S.E. Nicholson, Q. Zhang, and M.G. Schwacha. 2017. Damage-associated molecular patterns (DAMPs) released after burn are associated with inflammation and monocyte activation. Burns 43 (2): 297–303. https://doi.org/10.1016/j.burns.2016.10.001.

    Article  PubMed  Google Scholar 

  28. Ray, S., X. Ju, H. Sun, C.C. Finnerty, D.N. Herndon, and A.R. Brasier. 2013. The IL-6 trans-signaling-STAT3 pathway mediates ECM and cellular proliferation in fibroblasts from hypertrophic scar. The Journal of Investigative Dermatology 133 (5): 1212–1220. https://doi.org/10.1038/jid.2012.499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salgado, R.M., L. Alcantara, C.A. Mendoza-Rodriguez, M. Cerbon, C. Hidalgo-Gonzalez, P. Mercadillo, L.M. Moreno, R. Alvarez-Jimenez, and E. Krotzsch. 2012. Post-burn hypertrophic scars are characterized by high levels of IL-1beta mRNA and protein and TNF-alpha type I receptors. Burns 38 (5): 668–676. https://doi.org/10.1016/j.burns.2011.12.012.

    Article  PubMed  Google Scholar 

  30. Schaefer, C.J., D.W. Ruhrmund, L. Pan, S.D. Seiwert, and K. Kossen. 2011. Antifibrotic activities of pirfenidone in animal models. European Respiratory Review 20 (120): 85–97. https://doi.org/10.1183/09059180.00001111.

    Article  CAS  PubMed  Google Scholar 

  31. Symons, A., S. Beinke, and S.C. Ley. 2006. MAP kinase kinase kinases and innate immunity. Trends in Immunology 27 (1): 40–48. https://doi.org/10.1016/j.it.2005.11.007.

    Article  CAS  PubMed  Google Scholar 

  32. Tredget, E.E., B. Levi, and M.B. Donelan. 2014. Biology and principles of scar management and burn reconstruction. The Surgical Clinics of North America 94 (4): 793–815. https://doi.org/10.1016/j.suc.2014.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Venereau, E., M. Schiraldi, M. Uguccioni, and M.E. Bianchi. 2013. HMGB1 and leukocyte migration during trauma and sterile inflammation. Molecular Immunology 55 (1): 76–82. https://doi.org/10.1016/j.molimm.2012.10.037.

    Article  CAS  PubMed  Google Scholar 

  34. Veras-Castillo, E.R., L. Cardenas-Camarena, I. Lyra-Gonzalez, J.F. Munoz-Valle, S. Lucano-Landeros, J. Guerrerosantos, B. Gonzalez-Ulloa, et al. 2013. Controlled clinical trial with pirfenidone in the treatment of breast capsular contracture: association of TGF-beta polymorphisms. Annals of Plastic Surgery 70 (1): 16–22. https://doi.org/10.1097/SAP.0b013e31822284f4.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Q., M. Raoof, Y. Chen, Y. Sumi, T. Sursal, W. Junger, K. Brohi, K. Itagaki, and C.J. Hauser. 2010. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464 (7285): 104–107. https://doi.org/10.1038/nature08780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported in part by an appointment to the Postgraduate Research Participation Program at the US Army Institute of Surgical Research administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and USAMRMC. This work is funded in part through the Congressionally Directed Medical Research Programs, US Army Medical Research and Materiel Command W81XWH-15-2-0083, and the Naval Medical Research Center’s Advanced Medical Development program MIPR N3239815MHX040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai P. Leung.

Ethics declarations

Research was conducted in compliance with the Animal Welfare Act, the implementing Animal Welfare Regulations, and the principles of the Guide for the Care and Use of Laboratory Animals, National Research Council. The facility Institutional Animal Care and Use Committee approved all research conducted in this study. The facility where this research was conducted is fully accredited by AAALAC International.

Disclaimer

The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, J.L., Sebastian, E.A., Fourcaudot, A.B. et al. Pirfenidone Ointment Modulates the Burn Wound Bed in C57BL/6 Mice by Suppressing Inflammatory Responses. Inflammation 42, 45–53 (2019). https://doi.org/10.1007/s10753-018-0871-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0871-y

KEY WORDS

Navigation