Skip to main content

Advertisement

Log in

Resolvin D1 Promotes SIRT1 Expression to Counteract the Activation of STAT3 and NF-κB in Mice with Septic-Associated Lung Injury

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Resolvin D1 (RvD1) is a novel endogenous docosahexaenoic acid (DHA)-derived lipid mediators, which possesses a dual role of anti-inflammation and promotes inflammation resolution. The aim of the present study was to assess the effects of RvD1 on cecal ligation and puncture (CLP) model of sepsis and explore the underlying mechanism. Six-to-eight-week-old male C57BL/6 mice were randomly divided into following three groups: sham-operated group (SO), CLP model group (CLP), and CLP+RvD1 group (RvD1). The SO group underwent the sham operation. The RvD1 groups were administered RvD1 (10-ng/g body weight) by penile vein injection, but the CLP groups were administered the same volume of vehicle (PBS) after CLP. We assessed the survival benefit of RvD1 in CLP-induced septic mice for 7 days. After 24 h, mice were sacrificed, bronchoalveolar lavage fluids (BALF) was collected for proinflammatory cytokines assay, and albumin assay and the lung tissues were harvested for histologic analysis, myeloperoxidase (MPO) activity and the expression of Sirtuin 1 (SIRT1), signal transducers, and activators of transcription 3 (STAT3), nuclear factor-κB (NF-κB), and mitogen-activated protein kinases (MAPKs). RvD1 treatment increased the survival time in mice with sepsis induced by CLP, reducing the MPO activity and albumin level at 24 h. The levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in BALF were significantly decreased by RvD1. RvD1 promoted SIRT1 expression and suppressed the activation of NF-κB, STAT3, ERK, and p38 in lung tissues of septic mice. These results suggest that RvD1 may improve survival and attenuate the degree of lung inflammation reaction in mice with CLP by suppressing STAT3, NF-κB, ERK, and p38 expressions through a mechanism partly dependent on SIRT1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dellinger, R.P., M.M. Levy, A. Rhodes, et al. 2013. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Critical Care Medicine 41 (2): 580–637.

    Article  PubMed  Google Scholar 

  2. Wang, H.E., N.I. Shapiro, D.C. Angus, and D.M. Yealy. 2007. National estimates of severe sepsis in United States emergency departments. Critical Care Medicine 35 (8): 1928–1936.

    Article  PubMed  Google Scholar 

  3. Mayr, F.B., S. Yende, and D.C. Angus. 2014. Epidemiology of severe sepsis. Virulence 5 (1): 4–11.

    Article  PubMed  Google Scholar 

  4. Serhan, C.N., S. Krishnamoorthy, A. Recchiuti, et al. 2011. Novel anti-inflammatory–pro-resolving mediators and their receptors. Current Topics in Medicinal Chemistry 11 (6): 629–647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hsiao, H.M., T.H. Thatcher, E.P. Levy, R.A. Fulton, K.M. Owens, R.P. Phipps, and P.J. Sime. 2014. Resolvin D1 attenuates polyinosinic-polycytidylic acid-induced inflammatory signaling in human airway epithelial cells via TAK1. Journal of Immunology 193 (10): 4980–4987.

    Article  CAS  Google Scholar 

  6. Recchiuti, A. 2013. Resolvin D1 and its GPCRs in resolution circuits of inflammation. Prostaglandins and Other Lipid Mediators 107: 64–76.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, H.J., M.K. Park, E.J. Lee, et al. 2013. Resolvin D1 inhibits TGF-beta1-induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32. The International Journal of Biochemistry & Cell Biology 45 (12): 2801–2807.

    Article  CAS  Google Scholar 

  8. Wang, Q., X. Zheng, Y. Cheng, Y.L. Zhang, H.X. Wen, Z. Tao, H. Li, Y. Hao, Y. Gao, L.M. Yang, F.G. Smith, C.J. Huang, and S.W. Jin. 2014. Resolvin D1 stimulates alveolar fluid clearance through alveolar epithelial sodium channel, Na, K-ATPase via ALX/cAMP/PI3K pathway in lipopolysaccharide-induced acute lung injury. Journal of Immunology 192 (8): 3765–3777.

    Article  CAS  Google Scholar 

  9. S, Rossi, C. Di Filippo, C. Gesualdo, et al. 2015. Interplay between intravitreal RvD1 and local endogenous sirtuin-1 in the protection from endotoxin-induced uveitis in rats. Mediators of Inflammation 2015: 126408.

    Google Scholar 

  10. Kuang, H., X. Hua, J. Zhou, et al. 2015. Resolvin D1 and E1 alleviate the progress of hepatitis toward liver cancer in long-term concanavalin A-induced mice through inhibition of NF-κB activity. Oncology Reports 2015: 4389.

    Google Scholar 

  11. Chen, F., X.H. Fan, Y.P. Wu, J.L. Zhu, F. Wang, L.L. Bo, J.B. Li, R. Bao, and X.M. Deng. 2014. Resolvin D1 improves survival in experimental sepsis through reducing bacterial load and preventing excessive activation of inflammatory response. European Journal of Clinical Microbiology & Infectious Diseases 33 (3): 457–464.

    Article  CAS  Google Scholar 

  12. Wang, Yaxin, Shanglong Yao, Huaqing Shu, et al. 2014. Resolvin D1 attenuates lipopolysaccharide induced acute lung injury through CXCL-12/CXCR4 pathway. Journal of Surgical Research 188 (1): 213–221.

    Article  CAS  Google Scholar 

  13. Liu, R., H. Jiang, Y. Tian, et al. 2015, 2015. Astragaloside IV protects against polymicrobial sepsis through inhibiting inflammatory response and apoptosis of lymphocytes. Journal of Surgical Research: 1–9.

  14. Zhong-Qian, Lu, Lu Jian-Xia, and Yi-Jun Deng. 2015. Glucocorticoids offer protection against myocardial injury in a murine model of sepsis. International Journal of Clinical and Experimental Medicine 8 (8): 12211–12218.

    Google Scholar 

  15. Liu, S.F., and A.B. Malik. 2006. NF-κB activation as a pathological mechanism of septic shock and inflammation. American Journal of Physiology Lung Cellular and Molecular Physiology 290 (4): 622–645.

    Article  CAS  Google Scholar 

  16. Wang, J., Y.T. Liu, L. Xiao, L. Zhu, Q. Wang, and T. Yan. 2014. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation 37 (6): 2085–2090.

    Article  PubMed  CAS  Google Scholar 

  17. Abraham, E. 2005. Alterations in cell signaling in sepsis. Clinical Infectious Diseases 41: S459–S464.

    Article  PubMed  CAS  Google Scholar 

  18. Jarrar, D., I.H. Chaudry, and P. Wang. 1999. Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (review). International Journal of Molecular Medicine 4: 575–583.

    PubMed  CAS  Google Scholar 

  19. Strassheim, D., J.S. Park, and E. Abraham. 2002. Sepsis: current concepts in intracellular signaling. The International Journal of Biochemistry & Cell Biology 34: 1527–1533.

    Article  CAS  Google Scholar 

  20. Barnato, A.E., S.L. Alexander, W.T. Linde-Zwirble, and D.C. Angus. 2008. Racial variation in the incidence, care, and outcomes of severe sepsis: analysis of population, patient, and hospital characteristics. American Journal of Respiratory and Critical Care Medicine 177: 279–284.

    Article  PubMed  Google Scholar 

  21. Tu, B., L. Du, Q.M. Fan, et al. 2012. STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Letters 325: 80–88.

    Article  PubMed  CAS  Google Scholar 

  22. Jiang, J.X., S.J. Zhang, H.J. Shen, Y. Guan, Q. Liu, W. Zhao, Y.L. Jia, J. Shen, X.F. Yan, and Q.M. Xie. 2017. Rac1 signaling regulates cigarette smoke-induced inflammation in the lung via the Erk1/2 MAPK and STAT3 pathways. Biochimica et Biophysica Acta 1863 (7): 1778–1788.

    Article  PubMed  CAS  Google Scholar 

  23. Zhao J, Yu H, Liu Y, Gibson S. A., Yan Z., Xu X., Gaggar A., Li P.K., Li C., Wei S., Benveniste E. N., Qin H. 2016. Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury.Am J Physiol Lung Cell Mol Physiol 311(5):L868-L880.

  24. Park, S.D., S.Y. Cheon, T.Y. Park, B.Y. Shin, H. Oh, S. Ghosh, B.N. Koo, and S.K. Lee. 2015. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis. Biochemical and Biophysical Research Communications 464 (3): 711–717.

    Article  PubMed  CAS  Google Scholar 

  25. Yeung, F., J.E. Hoberg, C.S. Ramsey, M.D. Keller, D.R. Jones, R.A. Frye, and M.W. Mayo. 2004. Modulation of NF-kappa B-dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal 23: 2369–2380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cheng, H.L., R. Mostoslavsky, S. Saito, J.P. Manis, Y. Gu, P. Patel, R. Bronson, E. Appella, F.W. Alt, and K.F. Chua. 2003. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 100: 10794–10799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gao, Rong, Zhongsen Ma, Yuxin Hu, et al. 2015. Sirt1 restrains lung inflammasome activation in a murine model of sepsis. American Journal of Physiology. Lung Cellular and Molecular Physiology 308 (8): 847–853.

    Article  CAS  Google Scholar 

  28. Gao, Rong, Jiao Chen, Yuxin Hu, Zhenyu Li, Shuxia Wang, Sreerama Shetty, and Jian Fu. 2014. Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS One 9 (6): e98909.36.

    Google Scholar 

  29. Rittirsch, D., M.S. Huber-Lang, M.A. Flierl, et al. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4 (1): 31–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hou, L.C., M.Z. Qin, L.N. Zheng, Y. Lu, Q. Wang, D.R. Peng, X.P. Yu, Y.C. Xin, G.L. Ji, and L.Z. Xiong. 2009. Severity of sepsis is correlated with the elevation of serum high-mobility group box 1 in rats. Chinese Medical Journal 122 (4): 449–454.

    PubMed  CAS  Google Scholar 

  31. Hotchkiss, R.S., G. Monneret, and D. Payen. 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nature Reviews. Immunology 13 (12): 862–874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dombrovskiy, V.Y., A.A. Martin, J. Sunderram, and H.L. Paz. 2007. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Critical Care Medicine 35 (5): 1244–1250.

    Article  PubMed  Google Scholar 

  33. Aziz, M., A. Jacob, W.L. Yang, A. Matsuda, and P. Wang. 2013. Current trends in inflammatory and immunomodulatory mediators in sepsis. Journal of Leukocyte Biology 93 (3): 329–342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cox, R., Jr., O. Phillips, J. Fukumoto, I. Fukumoto, P.T. Parthasarathy, S. Arias, Y. Cho, R.F. Lockey, and N. Kolliputi. 2015. Enhanced resolution of hyperoxic acute lung injury as a result of aspirin triggered resolvin D1 treatment. American Journal of Respiratory Cell and Molecular Biology 53 (3): 422–435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cox, R., Jr., O. Phillips, J. Fukumoto, et al. 2015. Resolvins decrease oxidative stress mediated macrophage and epithelial cell interaction through decreased cytokine secretion. PLoS One 10 (8): e0136755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Risøe, P.K., U. Ryg, Y.Y. Wang, A. Rutkovskiy, B. Smedsrød, G. Valen, and M.K. Dahle. 2011. Cecal ligation and puncture sepsis is associated with attenuated expression of adenylyl cyclase 9 and increased miR142-3p. Shock 36 (4): 390–395.

    Article  PubMed  CAS  Google Scholar 

  37. Dejager, L., I. Pinheiro, E. Dejonckheere, and C. Libert. 2011. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis. Trends in Microbiology 19 (4): 198–208.

    Article  PubMed  CAS  Google Scholar 

  38. Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. The New England Journal of Medicine 342 (18): 1334–1349, 2000.

    Article  PubMed  CAS  Google Scholar 

  39. Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. The New England Journal of Medicine 353 (16): 1685–1693.

    Article  PubMed  CAS  Google Scholar 

  40. Aziz, M., A. Matsuda, W.L. Yang, A. Jacob, and P. Wang. 2012. Milk fat globule-epidermal growth factor-factor 8 attenuates neutrophil infiltration in acute lung injury via modulation of CXCR2. Journal of Immunology 189 (1): 393–402.

    Article  CAS  Google Scholar 

  41. Wheeler, D.S., B. Zingarelli, W.J. Wheeler, and H. Wong. 2009. Novel pharmacologic approaches to the management of sepsis: targeting the host inflammatory response. Recent Patents on Inflammation & Allergy Drug Discovery 3 (2): 96–112.

    Article  CAS  Google Scholar 

  42. Kauppinen, A., T. Suuronen, J. Ojala, K. Kaarniranta, and A. Salminen. 2013. Antagonistic crosstalk between NF-KB and SIRT1 in the regulation of inflammation and metabolic disorders. Cellular Signalling 25: 1939–1948.

    Article  PubMed  CAS  Google Scholar 

  43. Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-κB in inflammation. Nature Reviews. Immunology 8 (11): 837–848.

    Article  PubMed  CAS  Google Scholar 

  44. Guo, L., S. Li, Y. Zhao, P. Qian, F. Ji, L. Qian, X. Wu, and G. Qian. 2015. Silencing angiopoietin-like protein 4 (ANGPTL4)protects against lipopolysaccharide-induced acute lung injury via regulating SIRT1 /NF-kB pathway. Journal of Cellular Physiology 230 (10): 2390–2402.

    Article  PubMed  CAS  Google Scholar 

  45. Yu, H., D. Pardoll, and R. Jove. 2009. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews. Cancer 9 (11): 798–809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhao, L., R. An, Y. Yang, X. Yang, H. Liu, L. Yue, X. Li, Y. Lin, R.J. Reiter, and Y. Qu. 2015. Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling. Journal of Pineal Research 59 (2): 230–239.

    Article  PubMed  CAS  Google Scholar 

  47. Kim, Y.M., E.J. Park, J.H. Kim, S.W. Park, H.J. Kim, and K.C. Chang. 2016. Ethyl pyruvate inhibits the acetylation and release of HMGB1 via effects on SIRT1/STAT signaling in LPS-activated RAW264.7 cells and peritoneal macrophages. International Immunopharmacology 41: 98–105.

    Article  PubMed  CAS  Google Scholar 

  48. Li, T., J. Zhang, J. Feng, et al. 2013. Resveratrol reduces acute lung injury in a LPS-induced sepsis mouse model via activation of Sirt1. Molecular Medicine Reports 7 (6): 1889–1895.

    Article  PubMed  CAS  Google Scholar 

  49. Jia, Y., Z. Zheng, Y. Wang, et al. 2015. SIRT1 is a regulator in high glucose-induced inflammatory response in RAW264.7 cells. PLoS One 10 (3): e0120849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yeung, F., J.E. Hoberg, C.S. Ramsey, M.D. Keller, D.R. Jones, R.A. Frye, and M.W. Mayo. 2004. Modulationof NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal 23 (12): 2369–2380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang, R., H.Z. Chen, J.J. Liu, et al. 2010. SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages. The Journal of Biological Chemistry 285 (10): 7097–7110.

    Article  PubMed  CAS  Google Scholar 

  52. Storka, Angela, Gerhard Führlinger, Martin Seper, et al. 2013. E. coli endotoxin modulates the expression of sirtuin proteins in PBMC in humans. Mediators of Inflammation 2013 (19): 876943.

    PubMed  PubMed Central  Google Scholar 

  53. Nie, Y., D.M. Erion, Z. Yuan, M. Dietrich, G.I. Shulman, T.L. Horvath, and Q. Gao. 2009. STAT3 inhibition of gluconeogenesis is downregulated by SIRT1. Nature Cell Biology 11: 492–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gao, Rong, Jiao Chen, Yuxin Hu, et al. 2014. Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS One 9 (6): e98909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Khan, S., R.J. Choi, O. Shehzad, et al. 2013. Molecular mechanism of capillarisin-mediated inhibition of My D88/TIRAP inflammatory signaling in in vitro and in vivo experimental models. Journal of Ethnopharmacology 145 (2): 626–637.

    Article  PubMed  CAS  Google Scholar 

  56. Bhaskaran, N., S. Shukla, J.K. Srivastava, and S. Gupta. 2010. Chamomile: an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking Rel A/p65 activity. International Journal of Molecular Medicine 26 (6): 935–940.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Ma, L., Y. Zhao, R. Wang, et al. 2015. 3,5,4′-Tri-o-acetylresveratrol attenuates lipopolysaccharide-induced acute respiratory distress syndrome via MAPK/SIRT1 pathway. Mediators of Inflammation 2015 (16): 143074.

    PubMed  PubMed Central  Google Scholar 

  58. Rieder, S.A., P. Nagarkatti, and M. Nagarkatti. 2012. Multiple anti-inflammatory pathways triggered by reveratrol lead to amelioration of staphylococcal enterotoxin B-induced lung injury. British Journal of Pharmacology 167 (6): 1244–1258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work is supported by Tianjin Science and Technology Project, China, No.13RCGFSY19300.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Gao or Ximo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, Y., Zhang, S., Li, C. et al. Resolvin D1 Promotes SIRT1 Expression to Counteract the Activation of STAT3 and NF-κB in Mice with Septic-Associated Lung Injury. Inflammation 41, 1762–1771 (2018). https://doi.org/10.1007/s10753-018-0819-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0819-2

KEY WORDS

Navigation