Skip to main content
Log in

The Regulatory Roles of Toll-Like Receptor 4 in Secretions of Type 1/Type 2 Relative Cytokines by Splenocytes and Dendritic Cells Exposed to Clonorchis sinensis Excretory/Secretory Products

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The roles of TLR4 in mediation of innate immune response and in regulation of adaptive immune responses triggered by Clonorchis sinensis remain unknown. In the present study, splenocytes derived from C3H/HeN (TLR4wild) and C3H/Hej mice (TLR4mut) that were infected with 45 metacercariae of C. sinensis were harvested, then stimulated by C. sinensis excretory/secretory products (ESP) or medium (control) for 48 h, respectively. Meanwhile, bone marrow-derived dendritic cells (BMDCs) from normal C3H/HeN and C3H/Hej mice were prepared and stimulated with medium, ESP, LPS, or ESP+LPS for 24 h, respectively. The supernatants were collected, and the concentrations of type 1 and type 2 relative cytokines were determined by ELISA. The maturation of BMDCs indicated by surface markers of CD80, CD86, and MHC II was evaluated by flow cytometry. The results showed that the levels of IFN-γ, IL-6, TNF-α, and IL-10 in the splenocytes from C. sinensis-infected TLR4mut mice were significantly lower than those from TLR4wild mice when they were further exposed to ESP. For BMDCs, the productions of the cytokines IL-12p70 and IL-10, but not IL-4, in the BMDCs from TLR4 mutation mice were predominantly decreased compared with those from TLR4wild mice when the BMDCs were co-stimulated by ESP combined with LPS. Flow cytometry analysis showed that ESP could significantly decrease the high levels of CD80, CD86, and MHC II which were elevated by LPS. In conclusion, these data suggest that TLR4 may play a regulatory role in type 1 immune responses during C. sinensis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Petney, T.N., R.H. Andrews, W. Saijuntha, et al. 2013. The zoonotic, fish-borne liver flukes Clonorchis sinensis, Opisthorchis felineus and Opisthorchis viverrini. International Journal for Parasitology 43 (12): 1031–1046.

    Article  PubMed  Google Scholar 

  2. Sripa, B. 2008. Concerted action is needed to tackle liver fluke infections in Asia. PLoS Neglected Tropical Diseases 2 (5): e232.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tang, Z.L., Y. Huang and X.B. Yu. 2016. Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control. Infectious Diseases of Poverty 5(1): 71

  4. Huang, S.Y., G.H. Zhao, B.Q. Fu, et al. 2012. Genomics and molecular genetics of Clonorchis sinensis: current status and perspectives. Parasitology International 61(1): 71–76

  5. Hong, S.T., K.H. Park, M. Seo, et al. 1994. Correlation of sonographic findings with histopathological changes of the bile ducts in rabbits infected with Clonorchis sinensis. The Korean Journal of Parasitology 32: 223–230.

  6. Doetze, A., J. Satoguina, G. Burchard, et al. 2000. Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. International Immunology 12: 623–630.

    Article  CAS  PubMed  Google Scholar 

  7. Herbert, D.R., T. Orekov, C. Perkins, et al. 2008. IL-10 and TGF-beta redundantly protect against severe liver injury and mortality during acute schistosomiasis. Journal of Immunology 150: 7214–7220.

    Article  Google Scholar 

  8. Wang, X., F. Hu, X. Hu, et al. 2014. Proteomic identification of potential Clonorchis sinensis excretory/secretory products capable of binding and activating human hepatic stellate cells. Parasitology Research 113 (8): 3063–3071.

    Article  PubMed  Google Scholar 

  9. Yan, C., Y. Wang, Q. Yu, et al. 2015. Clonorchis sinensis excretory/secretory products promote the secretion of TNF-alpha in the mouse intrahepatic biliary epithelial cells via Toll-like receptor 4. Parasites & Vectors 8: 559.

    Article  Google Scholar 

  10. Kim, Y.J., M.H. Choi, S.T. Hong, et al. 2008. Proliferative effects of excretory/secretory products from Clonorchis sinensis on the human epithelial cell line HEK293 via regulation of the transcription factor E2F1. Parasitology Research 102 (3): 411–417.

    Article  PubMed  Google Scholar 

  11. Annunziato, F., C. Romagmani, and S. Romagmani. 2015. The 3 major types of innate and adaptive cell-mediated effector immunity. Journal of Allergy and Clinical Immunology 135 (3): 626–635.

    Article  CAS  PubMed  Google Scholar 

  12. Manetti, R., P. Parronchi, M.G. Giudizi, et al. 1993. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. The Journal of Experimental Medicine 177 (4): 1199–1204.

    Article  CAS  PubMed  Google Scholar 

  13. Brombacher, F., R.A. Kastelein, G. Alber, et al. 2003. Novel IL-12 family members shed light on the orchestration of Th1 responses. Trends in Immunology 24 (4): 207–212.

    Article  CAS  PubMed  Google Scholar 

  14. Gause, W.C., T.A. Wynn, and J.E. Allen. 2013. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nature Reviews Immunology 13: 607–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wynn, T.A. 2015. Type 2 cytokines: mechanisms and therapeutic strategies. Nature Reviews Immunology 15: 271–282.

    Article  CAS  PubMed  Google Scholar 

  16. Chris, J., L. Jillian, and N.J. Andrew. 2011. Insights into the initiation of type 2 immune responses. Immunology 134 (4): 378–385.

    Article  Google Scholar 

  17. Xiaoli, P., W. Zhaoxi, Z. Naicui, et al. 2016. IL-10 plays a central regulatory role in the cytokines induced by hepatitis C virus core protein and polyinosinic acid:polycytodylic acid. International Immunopharmacology 38: 284–290.

    Article  Google Scholar 

  18. Saraiva, Margarida, and Anne O'Garra. 2010. The regulation of IL-10 production by immune cells. Nature Reviews Immunology 10: 170–181.

    Article  CAS  PubMed  Google Scholar 

  19. Taylor, Alison, Johan Verhagen, Kurt Blaser, et al. 2006. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. Immunology 117 (4): 433–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pulendran, B., H. Tang, and S. Manicassamy. 2010. Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nature Immunology 11: 647–655.

    Article  CAS  PubMed  Google Scholar 

  21. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nature Reviews Immunology 1: 135–145.

    Article  CAS  PubMed  Google Scholar 

  22. Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140: 805–820.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto, M., and K. Takeda. 2010. Current views of toll-like receptor signaling pathways. Gastroenterology Resarch and Practice 2010: 240–365.

    Google Scholar 

  24. Jolanda, B., H. René, H. Kina, et al. 2016. Transcriptome signature for dampened Th2 dominance in acellular pertussis vaccine-induced CD4+ T cell responses through TLR4 ligation. Scientific Peports 6: 25064.

    Article  Google Scholar 

  25. Kui, S., B. Laura, L. Megan, et al. 2014. Targeting of Toll-like receptors inhibits CD4+ regulatory T cell function and activates lymphocytes in human PBMCs. Journal of Immunology 193 (2): 627–634.

    Article  Google Scholar 

  26. Alloatti, A., F. Kotsias, A.M. Pauwels, et al. 2015. Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome fusion and promotes cross-presentation of antigens. Immunity 43 (6): 1087–1100.

    Article  CAS  PubMed  Google Scholar 

  27. Kapsenberg, M. 2003. Dendritic-cell control of pathogen-driven T-cell polarization. Nature Reviews Immunology 3: 984–993.

    Article  CAS  PubMed  Google Scholar 

  28. Klaver, E., L. Kuijk, T. Lindhorst, et al. 2015. Schistosoma mansoni soluble egg antigens induce expression of the negative regulators SOCS1 and SHP1 in human dendritic cells via interaction with the mannose receptor. PLoS One 10 (4): e0124089.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kumar, H., T. Kawai, and S. Akira. 2009. Toll-like receptors and innate immunity. Biochemical and Biophysical Research Communications 388 (4): 621–625.

    Article  CAS  PubMed  Google Scholar 

  30. Goodridge, H.S., E.H. Wilson, W. Harnett, et al. 2001. Modulation of macrophage cytokine production by ES-62, a secreted product of the filarial nematode Acanthocheilonema viteae. Immunology 167: 940–945.

    Article  CAS  Google Scholar 

  31. Yan, C., L. Wang, B. Li, et al. 2015. The expression dynamics of transforming growth factor-β/Smad signaling in the liver fibrosis experimentally caused by Clonorchis sinensis. Parasites & Vectors 8: 70–78.

    Article  CAS  Google Scholar 

  32. Lin, K.H., K.C. Lin, W.J. Lu, et al. 2016. Astaxanthin, a carotenoid, stimulates immune responses by enhancing IFN-γ and IL-2 secretion in primary cultured lymphocytes in vitro and ex vivo. International Journal of Molecular Sciences 17 (1): 44–49.

    Article  Google Scholar 

  33. Lutz, M.B., N. Kukutsch, A.L. Ogilvie, et al. 1999. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods 223: 77–92.

    Article  CAS  PubMed  Google Scholar 

  34. Bonasio, R., and U.H. von Andrian. 2006. Generation, migration and function of circulating dendritic cells. Current Opinion in Immunology 18 (4): 503–511.

    Article  CAS  PubMed  Google Scholar 

  35. Ludwig-Portugall, I., and L.E. Layland. 2012. TLRs, Treg, and B cells, an interplay of regulation during helminth infection. Frontiers in Immunology 3: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lynn, M., L. Lucja, S. Abena, et al. 2011. Enhanced pro-inflammatory cytokine responses following Toll-like-receptor ligation in Schistosoma haematobium-infected school children from rural Gabon. PLoS One 6 (9): e24393.

    Article  Google Scholar 

  37. Zhang, M., Y. Gao, X. Du, et al. 2011. Toll-like receptor (TLR) 2 and TLR4 deficiencies exert differential in vivo effects against Schistosoma japonicum. Parasite Immunology 33 (4): 199–209.

    Article  PubMed  Google Scholar 

  38. Obendorf, J., P. Renner Viveros, M. Fehlings, et al. 2013. Increased expression of CD25, CD83, and CD86, and secretion of IL-12, IL-23, and IL-10 by human dendritic cells incubated in the presence of Toll-like receptor 2 ligands and Giardia duodenalis. Parasites & Vectors 6: 317–321.

    Article  Google Scholar 

  39. Aranzamendi, C., F. Fransen, M. Langelaar, et al. 2012. Trichinella spiralis-secreted products modulate DC functionality and expand regulatory T cells in vitro. Parasite Immunology 34: 210–223.

    Article  CAS  PubMed  Google Scholar 

  40. Trinchieri, G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews Immunology 3: 133–146.

    Article  CAS  PubMed  Google Scholar 

  41. Bijan, K., T. Marziyeh, M. Zahra, et al. 2016. T-helper type 1 and 2 cytokine levels in patients with benign and malignant salivary gland tumors. Iranian Journal of Immunology 13 (1): 9–15.

    Google Scholar 

  42. Li, J.N., J.X. Li, H.L. Huang, et al. 2015. Influence of sirolimus-induced TGF-β secretion on mouse Treg cell proliferation. Genetics and Molecular Research 14 (4): 18569–18579.

    Article  CAS  PubMed  Google Scholar 

  43. Yan, C., X.Y. Li, B. Li, et al. 2015. Expression of Toll-like receptor (TLR) 2 and TLR4 in the livers of mice infected by Clonorchis sinensis. Journal of Infection in Developing Countries 9 (10): 1147–1155.

    Article  PubMed  Google Scholar 

  44. O’Neill, L.A., and A.G. Bowie. 2007. The family of five: TIR-domain-containing adaptorsin Toll-like receptor signalling. Nature Reviews. Immunology 7: 353–364.

    Article  PubMed  Google Scholar 

  45. Clare, M., J. David, and E. Christine. 2009. The Fasciola hepatica tegumental antigen suppresses dendritic cell maturation and function. Infection and Immunity 77 (6): 2488–2498.

    Article  Google Scholar 

Download references

Acknowledgements

The current work was supported by the National Natural Science Foundation of China (Grant No. 81572019), Natural Science Fund for colleges and universities in Jiangsu Province (Grant Nos. 16KJB310016), Jiangsu Government Scholarship for overseas study (Grant No. JS-2015-119), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, Grant No. KYLX14-1448), and the Science Foundation of Xuzhou Medical University (Grant Nos. 2014KJ08 and 2014KJ10). The authors thank Dr. Barbara Baehr at UC San Diego International Center for her kind assistance in improving the English language of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Yan or Kui-Yang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, H., Du, Y., Ma, R. et al. The Regulatory Roles of Toll-Like Receptor 4 in Secretions of Type 1/Type 2 Relative Cytokines by Splenocytes and Dendritic Cells Exposed to Clonorchis sinensis Excretory/Secretory Products. Inflammation 41, 213–220 (2018). https://doi.org/10.1007/s10753-017-0679-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0679-1

KEY WORDS

Navigation