Skip to main content

Advertisement

Log in

Sex Differences in Macrophage Functions in Middle-Aged Rats: Relevance of Estradiol Level and Macrophage Estrogen Receptor Expression

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The aim of this study was to examine the influence of sex on age-related changes in phenotype and functional capacity of rat macrophages. The potential role of estradiol as a contributing factor to a sex difference in macrophage function with age was also examined. Thioglycollate-elicited peritoneal macrophages derived from the young (2 months old) and the naturally senescent intact middle-aged (16 months old) male and female rats were tested for cytokine secretion and antimicrobial activity (NO and H2O2 production and myeloperoxidase activity). Serum concentration of estradiol and the expression of estrogen receptor (ER)α and ERβ on freshly isolated peritoneal macrophages were also examined. Decreased secretion of IL-1β and IL-6 by macrophages from middle-aged compared to the young females was accompanied with the lesser density of macrophage ERα expression and the lower systemic level of estradiol, whereas the opposite was true for middle-aged male rats. Macrophages in the middle-aged females, even with the diminished circulating estradiol levels, produce increased amount of IL-6, and comparable amounts of IL-1β, TNF-α, and NO to that measured in macrophages from the middle-aged males. Age-related changes in macrophage phenotype and the antimicrobial activity were independent of macrophage ERα/ERβ expression and estradiol level in both male and female rats. Although our study suggests that the sex difference in the level of circulating estradiol may to some extent contribute to sex difference in macrophage function of middle-aged rats, it also points to more complex hormonal regulation of peritoneal macrophage activity in females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fischer, J., N. Jung, N. Robinson, and C. Lehmann. 2015. Sex differences in immune responses to infectious diseases. Infection. doi:10.1007/s15010-015-0791-9.

    PubMed  Google Scholar 

  2. Voskuhl, R.R., and S.M. Gold. 2012. Sex-related factors in multiple sclerosis susceptibility and progression. Nature Reviews Neurology. doi:10.1038/nrneurol.2012.43.

    PubMed  PubMed Central  Google Scholar 

  3. Živković, I., B. Bufan, V. Petrušić, R. Minić, N. Arsenović-Ranin, R. Petrović, and G. Leposavić. 2015. Sexual diergism in antibody response to whole virus trivalent inactivated influenza vaccine in outbred mice. Vaccine. doi:10.1016/j.vaccine.2015.09.006.

    Google Scholar 

  4. Griesbeck, M., S. Ziegler, S. Laffont, N. Smith, L. Chauveau, P. Tomezsko, A. Sharei, G. Kourjian, F. Porichis, et al. 2015. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-α production in women. The Journal of Immunology. doi:10.4049/jimmunol.1501684.

    PubMed  PubMed Central  Google Scholar 

  5. Hewagama, A., D. Patel, S. Yarlagadda, F.M. Strickland, and B.C. Richardson. 2009. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes & Immunity. doi:10.1038/gene.2009.

    Google Scholar 

  6. Klein, S.L., and K.L. Flanagan. 2016. Sex differences in immune responses. Nature Reviews Immunology. doi:10.1038/nri.2016.90.

    PubMed  Google Scholar 

  7. Ruggieri, A., S. Anticoli, A. D'Ambrosio, L. Giordani, and M. Viora. 2016. The influence of sex and gender on immunity, infection and vaccination. Annali dell’Istituto Superiore di Sanità. doi:10.4415/ANN_16_02_11.

    Google Scholar 

  8. Mahbub, S., A.L. Brubaker, and E.J. Kovacs. 2011. Aging of the innate immune system: An update. Current Opinion in Immunology. doi:10.2174/157339511794474181.

    Google Scholar 

  9. Weiskopf, D., B. Weinberger, and B. Grubeck-Loebenstein. 2009. The aging of the immune system. Transplant International. doi:10.1111/j.1432-2277.2009.00927.x.

    PubMed  Google Scholar 

  10. Linehan, E., and D.C. Fitzgerald. 2015. Ageing and the immune system: Focus on macrophages. European Journal of Microbiology and Immunology. doi:10.1556/EUJMI-D-14-00035.

    PubMed  PubMed Central  Google Scholar 

  11. Marriott, I., K.L. Bost, and Y.M. Huet-Hudson. 2006. Sexual dimorphism in expression of receptors for bacterial lipopolysaccharides in murine macrophages: A possible mechanism for gender-based differences in endotoxic shock susceptibility. Journal of Reproductive Immunology. doi:10.1016/j.jri.2006.01.004.

    PubMed  Google Scholar 

  12. Spitzer, J.A. 1999. Gender differences in some host defense mechanisms. Lupus. doi:10.1177/096120339900800510.

    PubMed  Google Scholar 

  13. Stanojević, S., I. Ćuruvija, V. Blagojević, R. Petrović, V. Vujić, and M. Dimitrijević. 2016. Strain-dependent response to stimulation in middle-aged rat macrophages: A quest after a useful indicator of healthy aging. Experimental Gerontology. doi:10.1016/j.exger.2016.10.005.

    PubMed  Google Scholar 

  14. Vermeulen, A., J.M. Kaufman, S. Goemaere, and I. van Pottelberg. 2002. Estradiol in elderly men. The Aging Male. doi:10.1080/tam.5.2.98.102.

    Google Scholar 

  15. Laughlin, G.A., E. Barrett-Connor, D. Kritz-Silverstein, and D. von Mühlen. 2000. Hysterectomy, oophorectomy, and endogenous sex hormone levels in older women: The Rancho Bernardo Study. The Journal of Clinical Endocrinology & Metabolism. doi:10.1210/jcem.85.2.6405.

    Google Scholar 

  16. Giefing-Kroll, C., P. Berger, G. Lepperdinger, and B. Grubeck-Loebenstein. 2015. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell. doi:10.1111/acel.12326.

    PubMed  PubMed Central  Google Scholar 

  17. Baeza, I., N.M. De Castro, L. Arranz, J. Fdez-Tresguerres, and M. De la Fuente. 2011. Ovariectomy causes immunosenescence and oxi-inflamm-ageing in peritoneal leukocytes of aged female mice similar to that in aged males. Biogerontology. doi:10.1007/s10522-010-9317-0.

    PubMed  Google Scholar 

  18. Zhao, H., Z. Tian, J. Hao, and B. Chen. 2005. Extragonadal aromatization increases with time after ovariectomy in rats. Reproductive Biology and Endocrinology. doi:10.1186/1477-7827-3-6.

    Google Scholar 

  19. Dimitrijević, M., S. Stanojević, N. Kuštrimović, K. Mitić, V. Vujić, I. Aleksić, K. Radojević, and G. Leposavić. 2013. The influence of aging and estradiol to progesterone ratio on rat macrophage phenotypic profile and NO and TNF-a production. Experimental Gerontology. doi:10.1016/j.exger.2013.07.001.

    PubMed  Google Scholar 

  20. Barrat, F., B. Lesourd, H.J. Boulouis, D. Thibault, S. Vincent-Naulleau, B. Gjata, A. Louise, T. Neway, and C. Pilet. 1997. Sex and parity modulate cytokine production during murine ageing. Clinical & Experimental Immunology. doi:10.1046/j.1365-2249.1997.4851387.x.

    Google Scholar 

  21. Carvalho-Freitas, M.I., J.A. Anselmo-Franci, E. Teodorov, A.G. Nasello, J. Palermo-Neto, and L.F. Felicio. 2007. Reproductive experience modifies dopaminergic function, serum levels of prolactin, and macrophage activity in female rats. Life Science. doi:10.1016/j.lfs.2007.04.032.

    Google Scholar 

  22. Pick, E., and D. Mizel. 1981. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. Journal of Immunological Methods. doi:10.1016/0022-1759(81)90138-1.

    PubMed  Google Scholar 

  23. Jr Johnston, R.B., and S. Kitagawa. 1985. Molecular basis for the enhanced respiratory burst of activated macrophages. Federation Proceedings 14: 2927–2932.

    Google Scholar 

  24. Choi, H.S., J.W. Kim, Y.N. Cha, and C. Kim. 2006. A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. Journal of Immunoassay and Immunochemistry. doi:10.1080/15321810500403722.

    Google Scholar 

  25. Pick, E., J. Charon, and D. Mizel. 1981. A rapid densitometric microassay for nitroblue tetrazolium reduction and application of the microassay to macrophages. Journal of the Reticuloendothelial Society. 6: 581–593.

    Google Scholar 

  26. Bradley, P., D.A. Priebat, R.D. Christensen, and G. Rothstein. 1982. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology. doi:10.1111/1523-1747.ep12506462.

    PubMed  Google Scholar 

  27. Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry. doi:10.1016/0003-2697(82)90118-X.

    Google Scholar 

  28. Dijkstra, C.D., E.A. Döpp, P. Joling, and G. Kraal. 1985. The heterogeneity of mononuclear phagocytes in lymphoid organs: Distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54: 589–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Thornley, T.B., Z. Fang, S. Balasubramanian, R.A. Larocca, W. Gong, S. Gupta, E. Csizmadia, N. Degauque, B.S. Kim, et al. 2014. Fragile TIM-4–expressing tissue resident macrophages are migratory and immunoregulatory. Journal of Clinical Investigation. doi:10.1172/JCI73527.

    PubMed  PubMed Central  Google Scholar 

  30. Negishi, H., Y. Ohba, H. Yanai, A. Takaoka, K. Honma, K. Yui, T. Matsuyama, T. Taniguchi, and K. Honda. 2005. Negative regulation of toll-like-receptor signaling by IRF-4. Proceedings of the National Academy of Sciences USA. doi:10.1073/pnas.0508327102.

    Google Scholar 

  31. Calippe, B., V. Douin-Echinard, L. Delpy, M. Laffargue, K. Lélu, A. Krust, B. Pipy, F. Bayard, J.F. Arnal, et al. 2010. 17Beta-estradiol promotes TLR4 triggered proinflammatory mediator production through direct estrogen receptor alpha signaling in macrophages in vivo. The Journal of Immunology. doi:10.4049/jimmunol.0902383.

    PubMed  Google Scholar 

  32. Frei, R., J. Steinle, T. Birchler, S. Loeliger, C. Roduit, D. Steinhoff, R. Seibl, K. Büchner, R. Seger, et al. 2010. MHC class II molecules enhance toll-like receptor mediated innate immune responses. PloS One. doi:10.1371/journal.pone.0008808.

    PubMed  PubMed Central  Google Scholar 

  33. Dimitrijević, M., S. Stanojević, V. Vujić, I. Aleksić, I. Pilipović, and G. Leposavić. 2014. Aging oppositely affects TNF-α and IL-10 production by macrophages from different rat strains. Biogerontology. doi:10.1007/s10522-014-9513-4.

    PubMed  Google Scholar 

  34. Simpson, E., G. Rubin, C. Clyne, K. Robertson, L. O’Donnell, S. Davis, and M. Jones. 1999. Local estrogen biosynthesis in males and females. Endocrine-Related Cancer. doi:10.1677/erc.0.0060131.

    Google Scholar 

  35. Campesi, I., M. Marino, A. Montella, S. Pais, F. Franconi. 2017. Sex differences in estrogen receptor α and β levels and activation status in LPS-stimulated human macrophages Journal of Cellular Physiology. 232: 340–345. doi: 10.1002/jcp.25425

  36. Jiang, Y., P. Gong, Z. Madak-Erdogan, T. Martin, M. Jeyakumar, K. Carlson, I. Khan, T.J. Smillie, A.G. Chittiboyina, et al. 2013. Mechanisms enforcing the estrogen receptor β selectivity of botanical estrogens. The FASEB Journal. doi:10.1096/fj.13-234617.

    Google Scholar 

  37. Murphy, A.J., P.M. Guyre, C.R. Wira, and P.A. Pioli. 2009. Estradiol regulates expression of estrogen receptor ERa46 in human macrophages. PloS One. doi:10.1371/journal.pone.0005539.

    Google Scholar 

  38. Matthews, J., and J.A. Gustafsson. 2003. Estrogen signaling: A subtle balance between ER alpha and ER beta. Molecular Interventions. doi:10.1124/mi.3.5.281.

    PubMed  Google Scholar 

  39. Ashcroft, G.S., J. Dodsworth, E. Van Boxtel, R.W. Tarnuzzer, M.A. Horan, G.S. Schultz, and M. Ferguson. 1997. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-1 levels. Nature Medicine. doi:10.1038/nm1197-1209.

    PubMed  Google Scholar 

  40. Moestrup, S.K., and H.J. Møller. 2004. CD163: A regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Annals of Medicine 5: 347–354.

    Article  Google Scholar 

  41. Geraldes, P., S. Gagnon, S. Hadjadj, Y. Merhi, M.G. Sirois, I. Cloutier, and J.F. Tanguay. 2006. Estradiol blocks the induction of CD40 and CD40L expression on endothelial cells and prevents neutrophil adhesion: An ER α -mediated pathway. Cardiovascular Research. doi:10.1016/j.cardiores.2006.05.015.

    PubMed  Google Scholar 

  42. Xie, H., C. Hua, L. Sun, X. Zhao, H. Fan, H. Dou, L. Sun, and Y. Hou. 2011. 17β-estradiol induces CD40 expression in dendritic cells via MAPK signaling pathways in a minichromosome maintenance protein 6-dependent manner. Arthritis & Rheumatology. doi:10.1002/art.30420.

    Google Scholar 

  43. Jackaman, C., H.G. Radley-Crabb, Z. Soffe, T. Shavlakadze, M.D. Grounds, and D.J. Nelson. 2013. Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice. Aging Cell. doi:10.1111/acel.12062.

    PubMed  Google Scholar 

  44. Straub, R.H. 2007. The complex role of estrogens in inflammation. Endocrine Reviews. doi:10.1210/er.2007-0001.

    PubMed  Google Scholar 

  45. West, P., I.E. Brodsky, C. Rahner, D.K. Woo, H. Erdjument-Bromage, O. Tempst, M.C. Walsh, Y. Choi, G.S. Shadel, and S. Ghosh. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. doi:10.1038/nature09973.

    Google Scholar 

  46. Gantner, B.N., R.M. Simmons, S.J. Canavera, S. Akira, and D.M. Underhill. 2003. Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. The Journal of Experimental Medicine. doi:10.1084/jem.20021787.

    PubMed  PubMed Central  Google Scholar 

  47. Ozinsky, A., D.M. Underhill, J.D. Fontenot, A.M. Hajjar, K.D. Smith, C.B. Wilson, L. Schroeder, and A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.250476497.

    Google Scholar 

  48. Rodrigues, M.R., D. Rodriguez, M. Russo, and A. Campa. 2002. Macrophage activation includes high intracellular myeloperoxidase activity. Biochemical and Biophysical Research Communications. doi:10.1006/bbrc.2002.6724.

    PubMed  Google Scholar 

  49. Abu-Soud, H.M., and S.L. Hazen. 2000. Nitric oxide is a physiological substrate for mammalian peroxidases. The Journal of Biological Chemistry. doi:10.1074/jbc.M002579200.

    Google Scholar 

  50. Shirato, K., and K. Imaizumi. 2015. Mechanisms underlying the suppression of inflammatory responses in peritoneal macrophages of middle-aged mice. In Physical activity, exercise, sedentary behavior and health, eds. Kazuyuki Kanosue, Satomi Oshima, Zhen-Bo Cao, and Koichiro Oka, 193–202. Tokyo: Springer. doi:10.1007/978-4-431-55333-5_16.

  51. Dieter, P. 1992. Relationship between intracellular pH changes, activation of protein kinase C and NADPHoxidase in macrophages. FEBS Letters. doi:10.1016/0014-5793(92)80012-6.

    Google Scholar 

  52. Porto, M.L., B.P. Rodrigues, T.N. Menezes, S.L. Ceschim, D.E. Casarini, A.L. Gava, T.M.C. Pereira, E.C. Vasquez, B.P. Campagnaro, and S.S. Meyrelles. 2015. Reactive oxygen species contribute to dysfunction of bone marrow hematopoietic stem cells in aged C57BL/6 J mice. Journal of Biomedical Science. doi:10.1186/s12929-015-0201-8.

    PubMed  PubMed Central  Google Scholar 

  53. Kovats, S. 2015. Estrogen receptors regulate innate immune cells and signaling pathways. Cellular Immunology. doi:10.1016/j.cellimm.2015.01.018.

    PubMed  PubMed Central  Google Scholar 

  54. Linehan, E., Y. Dombrowski, R. Snoddy, P.G. Fallon, A. Kissenpfennig, and D.C. Fitzgerald. 2014. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell. doi:10.1111/acel.12223.

    PubMed  PubMed Central  Google Scholar 

  55. Gaytan, F., J. Aceitero, C. Bellido, J.E. Sanchez-Criado, and E. Aguilar. 1991. Estrous cycle-related changes in mast cell numbers in several ovarian compartments in the rat. Biology of Reproduction. doi:10.1095/biolreprod45.1.27.

    PubMed  Google Scholar 

  56. Baird, D.T., P.E. Burger, G.D. Heavon-Jones, and R.J. Scaramuzzi. 1974. The site of secretion of androstenedione in non-pregnant women. Journal of Endocrinology. 63: 201–212.

    Article  CAS  PubMed  Google Scholar 

  57. Thijssen, J.H., M.A. Wiegerninck, G.H. Donker, and J. Poortman. 1984. Uptake and metabolism of oestriol in human target tissues. Journal of Steroid Biochemistry. 20: 955–958.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by the Ministry of Education, Science and Technological Development Republic of Serbia, Grant No 175050. The Ministry of Education, Science and Technological Development had no role in the study design, collection, analysis and interpretation of data, writing of the report, and decision to submit the article for publication. Authors express their gratitude to Tatjana Miletić, PhD (Health & Environment Department, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH), for critical reading and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislava Stanojević.

Ethics declarations

The experimental protocol and all procedures with animals and their care were approved by Ministry of Agriculture and Environmental Protection (license number 323-07-01577/2016-05/14, issued on 02-25-2016) and were in accordance with principles declared in Directive 2010/63/EU of the European Parliament and of the Council from 22 September 2010 on the protection of animals used for scientific purposes (revising Directive 86/609/EEC).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ćuruvija, I., Stanojević, S., Arsenović-Ranin, N. et al. Sex Differences in Macrophage Functions in Middle-Aged Rats: Relevance of Estradiol Level and Macrophage Estrogen Receptor Expression. Inflammation 40, 1087–1101 (2017). https://doi.org/10.1007/s10753-017-0551-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0551-3

KEY WORDS

Navigation