Skip to main content
Log in

A multifunctional alanine-rich anti-inflammatory peptide BCP61 showed potent inhibitory effects by inhibiting both NF-κB and MAPK expression

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The purified BCP61 was reported to be a unique low-molecular-weight (MW) anti-microbial peptide because of its non-identical alanine-rich N-terminal sequence. In this study, we investigated the anti-inflammatory effects of BCP61 on induction of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), pro-inflammatory cytokines, nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. The treatment with BCP61, with varying concentrations of 10, 50, and 100 μg/mL, inhibited levels of expression of LPS-induced NF-κB and MAPKs (extracellular signal-related kinases (ERKs), c-Jun NH2-terminal kinase (JNK), and mitogen-activated protein (p38)) as well as production of pro-inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). The results suggested that BCP61 prevents inhibitor of kappa B (IκBα) phosphorylation and degradation, thereby inhibiting the nuclear translocation of the p65 protein. We do report that the use of BCP61 in the treatment of inflammation as well as microbial infection could be a potent therapeutic candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Korhonen, H., and A. Pihlanto. 2006. Bioactive peptides: production and functionality. International Dairy Journal 16(9): 945–960.

    Article  CAS  Google Scholar 

  2. Oseguera-Toledo, M.E., E.G. de Mejia, V.P. Dia, and S.L. Amaya-Llano. 2011. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Food Chemistry 127(3): 1175–1185.

    Article  CAS  PubMed  Google Scholar 

  3. Ahn, C.-B., Y.-S. Cho, and J.-Y. Je. 2015. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chemistry 168: 151–156.

    Article  CAS  PubMed  Google Scholar 

  4. Kim, E.K., S.-Y. An, M.-S. Lee, T.H. Kim, H.-K. Lee, W.S. Hwang, S.J. Choe, T.-Y. Kim, S.J. Han, and H.J. Kim. 2011. Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutrition Research 31(6): 436–443.

    Article  CAS  PubMed  Google Scholar 

  5. Islam, M.S., and H. Choi. 2009. Antidiabetic effect of Korean traditional Baechu (Chinese cabbage) kimchi in a type 2 diabetes model of rats. Journal of Medicinal Food 12(2): 292–297.

    Article  CAS  PubMed  Google Scholar 

  6. Nose, F., T. Ichikawa, M. Fujiwara, and I. Okayasu. 2002. Up-regulation of cyclooxygenase-2 expression in lymphocytic thyroiditis and thyroid tumors. American Journal of Clinical Pathology 117(4): 546–551.

    Article  CAS  PubMed  Google Scholar 

  7. Klimp, A.H., H. Hollema, C. Kempinga, A.G. van der Zee, E.G. de Vries, and T. Daemen. 2001. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Research 61(19): 7305–7309.

    CAS  PubMed  Google Scholar 

  8. Mosser, D.M., and X. Zhang. 2008. Interleukin‐10: new perspectives on an old cytokine. Immunological Reviews 226(1): 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohshima, H. 2003. Genetic and epigenetic damage induced by reactive nitrogen species: implications in carcinogenesis. Toxicology Letters 140: 99–104.

    Article  PubMed  Google Scholar 

  10. Farrow, B., and B.M. Evers. 2002. Inflammation and the development of pancreatic cancer. Surgical Oncology 10(4): 153–169.

    Article  PubMed  Google Scholar 

  11. Keum, Y.-S., S.S. Han, K.-S. Chun, K.-K. Park, J.-H. Park, S.K. Lee, and Y.-J. Surh. 2003. Inhibitory effects of the ginsenoside Rg 3 on phorbol ester-induced cyclooxygenase-2 expression, NF-κB activation and tumor promotion. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 523: 75–85.

    Article  PubMed  Google Scholar 

  12. Karin, M., Y. Cao, F.R. Greten, and Z.-W. Li. 2002. NF-κB in cancer: from innocent bystander to major culprit. Nature Reviews. Cancer 2(4): 301–310.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, P., J. Han, and L. Hui. 2010. MAPK signaling in inflammation-associated cancer development. Protein & Cell 1(3): 218–226.

    Article  CAS  Google Scholar 

  14. Karin, M. 2006. Nuclear factor-κB in cancer development and progression. Nature 441(7092): 431–436.

    Article  CAS  PubMed  Google Scholar 

  15. Choi, Y.H., S.S. Cho, J.R. Simkhada, and J.C. Yoo. 2012. A novel thermotolerant and acidotolerant peptide produced by a Bacillus strain newly isolated from a fermented food (kimchi) shows activity against multidrug-resistant bacteria. International Journal of Antimicrobial Agents 40(1): 80–83.

    Article  CAS  PubMed  Google Scholar 

  16. Wadsworth, T.L., and D.R. Koop. 1999. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochemical Pharmacology 57(8): 941–949.

    Article  CAS  PubMed  Google Scholar 

  17. Kovacs-Nolan, J., H. Zhang, M. Ibuki, T. Nakamori, K. Yoshiura, P.V. Turner, T. Matsui, and Y. Mine. 2012. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochimica et Biophysica Acta (BBA)-General Subjects 1820(11): 1753–1763.

    Article  CAS  Google Scholar 

  18. Li, J., M.A. D’Annibale-Tolhurst, K.B. Adler, S. Fang, Q. Yin, A.J. Birkenheuer, M.G. Levy, S.L. Jones, E.J. Sung, and E.C. Hawkins. 2013. A myristoylated alanine-rich C kinase substrate–related peptide suppresses cytokine mRNA and protein expression in LPS-activated canine neutrophils. American Journal of Respiratory Cell and Molecular Biology 48(3): 314–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teixeira, L.D., O.N. Silva, L. Migliolo, I.C. Fensterseifer, and O.L. Franco. 2013. In vivo antimicrobial evaluation of an alanine-rich peptide derived from Pleuronectes americanus. Peptides 42: 144–148.

    Article  CAS  PubMed  Google Scholar 

  20. Murakami, A., and H. Ohigashi. 2007. Targeting NOX, INOS and COX‐2 in inflammatory cells: chemoprevention using food phytochemicals. International Journal of Cancer 121(11): 2357–2363.

    Article  CAS  PubMed  Google Scholar 

  21. An, S.J., H.O. Pae, G.S. Oh, B.M. Choi, S. Jeong, S.I. Jang, H. Oh, T.O. Kwon, C.E. Song, and H.T. Chung. 2002. Inhibition of TNF-alpha, IL-1beta, and IL-6 productions and NF-kappa B activation in lipopolysaccharide-activated RAW 264.7 macrophages by catalposide, an iridoid glycoside isolated from Catalpa ovata G. Don (Bignoniaceae). International Immunopharmacology 2(8): 1173–1181.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, E.H., B. Shim, S. Kang, G. Jeong, J.-S. Lee, Y.-B. Yu, and M. Chun. 2009. Anti-inflammatory effects of Scutellaria baicalensis extract via suppression of immune modulators and MAP kinase signaling molecules. Journal of Ethnopharmacology 126(2): 320–331.

    Article  PubMed  Google Scholar 

  23. Min, K.R., H. Lee, B.H. Kim, E. Chung, S.M. Cho, and Y. Kim. 2005. Inhibitory effect of 6-hydroxy-7-methoxychroman-2-carboxylic acid phenylamide on nitric oxide and interleukin-6 production in macrophages. Life Sciences 77(25): 3242–3257.

    Article  CAS  Google Scholar 

  24. Kyriakis, J.M., and J. Avruch. 1996. Sounding the alarm: protein kinase cascades activated by stress and inflammation. Journal of Biological Chemistry 271(40): 24313–24316.

    Article  CAS  PubMed  Google Scholar 

  25. Xiao, Z.-Y., W.-X. Zhou, Y.-X. Zhang, J.-P. Cheng, J.-F. He, R.-F. Yang, and L.-H. Yun. 2007. Inhibitory effect of linomide on lipopolysaccharide-induced proinflammatory cytokine tumor necrosis factor-alpha production in RAW264. 7 macrophages through suppression of NF-κB, p38, and JNK activation. Immunology Letters 114(2): 81–85.

    Article  CAS  PubMed  Google Scholar 

  26. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13(2): 85–94.

    Article  CAS  PubMed  Google Scholar 

  27. Hacker, H., and M. Karin. 2006. Regulation and function of IKK and IKK-related kinases. Science’s STKE 357(13): 12–14.

    Google Scholar 

  28. Karin, M. 1999. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18(49): 6867–6874.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Cheol Yoo or Joo-Won Suh.

Ethics declarations

Funding

This work was supported by research fund from Chosun University, 2016.

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not required.

Additional information

Yun Hee Choi and Yoon Seok Choi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y.H., Choi, Y.S., Kim, Y.K. et al. A multifunctional alanine-rich anti-inflammatory peptide BCP61 showed potent inhibitory effects by inhibiting both NF-κB and MAPK expression. Inflammation 40, 688–696 (2017). https://doi.org/10.1007/s10753-017-0515-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0515-7

KEY WORDS

Navigation