Skip to main content
Log in

Anti-inflammation Effects of Oxysophoridine on Cerebral Ischemia–Reperfusion Injury in Mice

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Oxysophoridine (OSR) is a bioactive alkaloid extracted from the Sophora alopecuroides Linn. Our aim is to explore the potential anti-inflammation mechanism of OSR in cerebral ischemic injury. Mice were intraperitoneally pretreated with OSR (62.5, 125, and 250 mg/kg) or nimodipine (Nim) (6 mg/kg) for 7 days followed by cerebral ischemia. The inflammatory-related cytokines in cerebral ischemic hemisphere tissue were determined by immunohistochemistry staining, Western blot and enzyme-like immunosorbent assay (ELISA). OSR-treated groups observably suppressed the nuclear factor kappa B (NF-κB), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). OSR-treated group (250 mg/kg) markedly reduced the inflammatory-related protein prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8). Meanwhile, it dramatically increased the interleukin-10 (IL-10). Our study revealed that OSR protected neurons from ischemia-induced injury in mice by downregulating the proinflammatory cytokines and blocking the NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rodríguez Cruz, Y., T. Yuneidys Mengana, A. Muñoz Cernuda, et al. 2010. Treatment with nasal neuro-EPO improves the neurological, cognitive, and histological state in a gerbil model of focal ischemia. The Scientific World Journal 10: 2288–2300.

    Article  PubMed  Google Scholar 

  2. Feigin, V.L. 2005. Stroke epidemiology in the developing world. The Lancet 365: 2160–2161.

    Article  Google Scholar 

  3. Wang, Q., T.J. Kalogeris, M. Wang, A.W. Jones, and R.J. Korthuis. 2010. Antecedent ethanol attenuates cerebral ischemia/reperfusion-induced leukocyte-endothelial adhesive interactions and delayed neuronal death: Role of large conductance, Ca2+-activated K+ channels. Microcirculation 17: 427–438.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Mehta, S.L., N. Manhas, and R. Raghubir. 2007. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Research Reviews 54: 34–66.

    Article  CAS  PubMed  Google Scholar 

  5. Cai, F., C.R. Li, J.L. Wu, et al. 2006. Theaflavin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-inflammatory effect and modulation of STAT-1. Mediators of Inflammation 2006: 1–9.

    Article  Google Scholar 

  6. Lo, E.H., T. Dalkara, and M.A. Moskowitz. 2003. Mechanisms, challenges and opportunities in stroke. Nature Reviews Neuroscience 4: 399–414.

    Article  CAS  PubMed  Google Scholar 

  7. Nurmi, A., P.J. Lindsberg, M. Koistinaho, et al. 2004. Nuclear factor-κB contributes to infarction after permanent focal ischemia. Stroke 35: 987–991.

    Article  PubMed  Google Scholar 

  8. Sugama, Y., C. Tiruppathi, T. Andersen, J. Fenton, and A. Malik. 1992. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. The Journal of Cell Biology 119: 935–944.

    Article  CAS  PubMed  Google Scholar 

  9. Kułdo, J.M., J. Westra, S.A. Ásgeirsdóttir, et al. 2005. Differential effects of NF-κB and p38 MAPK inhibitors and combinations thereof on TNF-α-and IL-1β-induced proinflammatory status of endothelial cells in vitro. American Journal of Physiology-Cell Physiology 289: 1229–1239.

    Article  Google Scholar 

  10. Ridet, J., A. Privat, S. Malhotra, and F. Gage. 1997. Reactive astrocytes: cellular and molecular cues to biological function. Trends in Neurosciences 20: 570–577.

    Article  CAS  PubMed  Google Scholar 

  11. Nomoto, Y., M. Yamamoto, T. Fukushima, et al. 2001. Expression of nuclear factor κB and tumor necrosis factor α in the mouse brain after experimental thermal ablation injury. Neurosurgery 48: 158–166.

    CAS  PubMed  Google Scholar 

  12. Swanson, R.A., W. Ying, and T.M. Kauppinen. 2004. Astrocyte influences on ischemic neuronal death. Current Molecular Medicine 4: 193–205.

    Article  CAS  PubMed  Google Scholar 

  13. Sofroniew, M.V. 2005. Reactive astrocytes in neural repair and protection. The Neuroscientist 11: 400–407.

    Article  CAS  PubMed  Google Scholar 

  14. Bethea, J.R., M. Castro, R.W. Keane, et al. 1998. Traumatic spinal cord injury induces nuclear factor-kappaB activation. The Journal of Neuroscience 18: 3251–3260.

    CAS  PubMed  Google Scholar 

  15. Brambilla, R., V. Bracchi-Ricard, W.H. Hu, et al. 2005. Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury. The Journal of Experimental Medicine 202: 145–156.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Alderton, W., C. Cooper, and R. Knowles. 2001. Nitric oxide synthases: structure, function and inhibition. Biochemical Journal 357: 593–615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Liu, Y., W. Li, L. Hu, et al. 2015. Downregulation of nitric oxide by electroacupuncture against hypoxic‑ischemic brain damage in rats via nuclear factor‑κB/neuronal nitric oxide synthase. Molecular Medicine Reports 11: 837–842.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Ovize, M., G.F. Baxter, F. Di Lisa, et al. 2010. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research 87: 406–423.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, T.F., Z. Lei, Y.X. Li, et al. 2013. Oxysophoridine protects against focal cerebral ischemic injury by inhibiting oxidative stress and apoptosis in mice. Neurochemical Research 38: 2408–2417.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H., Y. Li, N. Jiang, et al. 2013. Protective effect of oxysophoridine on cerebral ischemia/reperfusion injury in mice. Neural Regeneration Research 8: 1349–1359.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Zhao, J., Y.X. Li, Y.J. Hao, et al. 2013. Effects of oxysophoridine on rat hippocampal neurons sustained oxygen-glucose deprivation and reperfusion. CNS Neuroscience and Therapeutics 19: 138–141.

    Article  CAS  PubMed  Google Scholar 

  22. Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91.

    Article  CAS  PubMed  Google Scholar 

  23. Macrae, I. 1992. New models of focal cerebral-ischemia. British Journal of Clinical Pharmacology 34: 302–308.

    Article  Google Scholar 

  24. Guo, Y., X. Xu, Q. Li, Z. Li, and F. Du. 2010. Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats. Behavioral and Brain Functions 6: 1–7.

    Article  Google Scholar 

  25. Scheller, C. 2014. Pharmacological perioperative brain neuroprotection: nimodipine? British Journal of Anaesthesia 112: 178–179.

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-κB in inflammation. Nature Reviews Immunology 8: 837–848.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, S. Y., L. T. Xu, A. X. Li, and S. M. Wang. 2015. Effects of ergosterol, isolated from scleroderma polyrhizum pers., on lipopolysaccharide-induced inflammatory responses in acute lung injury. Inflammation.

  28. Rahman, A., and F. Fazal. 2011. Blocking NF-κB: an inflammatory issue. Proceedings of the American Thoracic Society 8: 497–503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wang, C., D. Zhang, G. Li, et al. 2007. Neuroprotective effects of safflor yellow B on brain ischemic injury. Experimental Brain Research 177: 533–539.

    Article  PubMed  Google Scholar 

  30. Zhu, Y., K. Saito, Y. Murakami, et al. 2006. Early increase in mRNA levels of pro-inflammatory cytokines and their interactions in the mouse hippocampus after transient global ischemia. Neuroscience Letters 393: 122–126.

    Article  CAS  PubMed  Google Scholar 

  31. Xiang, Z., S. Thomas, and G. Pasinetti. 2007. Increased neuronal injury in transgenic mice with neuronal overexpression of human cyclooxygenase-2 is reversed by hypothermia and rofecoxib treatment. Current Neurovascular Research 4: 274–279.

    Article  CAS  PubMed  Google Scholar 

  32. Tabassum, R., K. Vaibhav, P. Shrivastava, et al. 2015. Perillyl alcohol improves functional and histological outcomes against ischemia-reperfusion injury by attenuation of oxidative stress and repression of COX-2, NOS-2 and NF-κB in middle cerebral artery occlusion rats. European Journal of Pharmacology 747: 190–199.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng, O., R.P. Ostrowski, W. Liu, and J.H. Zhang. 2010. Activation of liver X receptor reduces global ischemic brain injury by reduction of nuclear factor-κB. Neuroscience 166: 1101–1109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sasaki, T., K. Kitagawa, K. Yamagata, et al. 2004. Amelioration of hippocampal neuronal damage after transient forebrain ischemia in cyclooxygenase-2-deficient mice. Journal of Cerebral Blood Flow and Metabolism 24: 107–113.

    Article  CAS  PubMed  Google Scholar 

  35. Mukhopadhyay, P., B. Horváth, Z. Zsengellėr, et al. 2012. Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia-reperfusion: therapeutic potential of mitochondrially targeted antioxidants. Free Radical Biology and Medicine 53: 1123–1138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Maddahi, A., L.S. Kruse, Q.W. Chen, and L. Edvinsson. 2011. The role of tumor necrosis factor-alpha and TNF-alpha receptors in cerebral arteries following cerebral ischemia in rat. Journal of Neuroinflammation 8: 1–13.

    Article  Google Scholar 

  37. Jean, W.C., S.R. Spellman, E.S. Nussbaum, and W.C. Low. 1998. Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery 43: 1382–1396.

    CAS  PubMed  Google Scholar 

  38. Barone, F., B. Arvin, R. White, et al. 1997. Tumor necrosis factor-α A mediator of focal ischemic brain injury. Stroke 28: 1233–1244.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, R.L., Z.G. Zhang, and M. Chopp. 2013. Targeting nitric oxide in the subacute restorative treatment of ischemic stroke. Expert Opinion on Investigational Drugs 22: 843–851.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Hallenbeck, J.M., and A.J. Dutka. 1990. Background review and current concepts of reperfusion injury. Archives of Neurology 47: 1245–1254.

    Article  CAS  PubMed  Google Scholar 

  41. Aronowski, J., R. Strong, and J.C. Grotta. 1997. Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. Journal of Cerebral Blood Flow and Metabolism 17: 1048–1056.

    Article  CAS  PubMed  Google Scholar 

  42. Kuroda, S., and B. Siesjö. 1996. Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clinical Neuroscience 4: 199–212.

    Google Scholar 

  43. Ye, Y., Y. Lin, S. Manickavasagam, et al. 2008. Pioglitazone protects the myocardium against ischemia-reperfusion injury in eNOS and iNOS knockout mice. American Journal of Physiology-Heart and Circulatory Physiology 295: 2436–2446.

    Article  Google Scholar 

  44. Radak, D., I. Resanovic, and E.R. Isenovic. 2014. Link between oxidative stress and acute brain ischemia. Angiology 65: 667–676.

    Article  CAS  PubMed  Google Scholar 

  45. Iadecola, C., F. Zhang, R. Casey, H.B. Clark, and M.E. Ross. 1996. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27: 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  46. Choi, J.S., S.J. Kim, J.A. Shin, K.E. Lee, and E.M. Park. 2008. Effects of estrogen on temporal expressions of IL-1β and IL-1ra in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation. Neuroscience Letters 438: 233–237.

    Article  CAS  PubMed  Google Scholar 

  47. Tukhovskaya, E. A., E. A. Turovsky, M. V. Turovskaya, et al. Anti-inflammatory cytokine interleukin-10 increases resistance to brain ischemia through modulation of ischemia-induced intracellular Ca2+ response. Neuroscience Letters 571: 55–60.

Download references

Acknowledgments

We are grateful to Dr. Margaret for editing and polishing the manuscript. The study was supported by the National Natural Science Foundation of China (Grant No. 309605060) and the Natural Science Foundation of Ningxia (Grant No. NZ11212).

Conflict of Interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qiang Yu.

Additional information

Yong-Sheng Wang and Yu-Xiang Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YS., Li, YX., Zhao, P. et al. Anti-inflammation Effects of Oxysophoridine on Cerebral Ischemia–Reperfusion Injury in Mice. Inflammation 38, 2259–2268 (2015). https://doi.org/10.1007/s10753-015-0211-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0211-4

KEY WORDS

Navigation