Skip to main content
Log in

In Vitro Oxidation of Fibrinogen Promotes Functional Alterations and Formation of Advanced Oxidation Protein Products, an Inflammation Mediator

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Fibrinogen (FB) is a soluble blood plasma protein and is a key molecule involved in coagulation. Oxidative modification of proteins, such as the formation of advanced oxidation protein products (AOPP), a heterogeneous family of protein compounds structurally modified and derived from oxidative stress, may be associated with the pathophysiology of a number of chronic inflammatory diseases. Therefore, the aim of this study was to determine whether the formation of this mediator of inflammation occurs from FB and whether its generation is associated with structural changes. Results of the present study suggest that the oxidation of FB may provoke the formation of AOPP, which in turn, may promote functional alterations in FB, thus causing changes in its structural domains and increasing its procoagulant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu, C.Y., H.L. Nossel, and K.L. Kaplan. 1979. The binding of thrombin by fibrin. The Journal of Biological Chemistry 254: 10421–10425.

    CAS  PubMed  Google Scholar 

  2. Collen, D., G. Tygat, H. Claeys, and R. Piessens. 1972. Metabolism and distribution of fibrinogen. I. Fibrinogen turnover in physiological conditions in humans. British Journal of Haematology 22: 681–700.

    Article  CAS  PubMed  Google Scholar 

  3. Brow, J.H., N. Volkmann, G. Jun, A.H. Henschen-Edman, and C. Cohen. 2000. The crystal structure of modified bovine fibrinogen. Proceedings of National Academy of Sciences of the United States of America 97: 85–90.

    Article  Google Scholar 

  4. Hall, C.E., and H.S. Slayter. 1959. The fibrinogen molecule: its size, shape, and mode of polymerization. The Journal of the Biophysical and Biochemical Cytology 5: 11–16.

    Article  CAS  Google Scholar 

  5. Kollman, J.M., L. Pandi, M.R. Sawaya, M. Riley, and R.F. Doolittle. 2009. Crystal structure of human fibrinogen. Biochemistry 48: 3877–3886.

    Article  CAS  PubMed  Google Scholar 

  6. Budzynski, A.Z., S.A. Olexa, and B.V. Pandya. 1983. Fibrin polymerization sites in fibrinogen and fibrin fragments. Annals of the New York Academy of Sciences 408: 301–314.

    Article  CAS  PubMed  Google Scholar 

  7. Martinez, M., J.W. Weisel, and H. Ischiropoulos. Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. 2013. Free Radical Biology and Medicine 65: 411-418.

  8. Dalle-Donne, I., R. Rossi, D. Giustarini, A. Milzani, and R. Colombo. 2003. Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta 329: 23–38.

    Article  CAS  Google Scholar 

  9. Witko-Sarsat, V., M. Friedlander, C. Capeillère-Blandin, A.T. Nguyen-Khoa, A.T. Nguyen, J. Zingraff, P. Jungers, et al. 1996. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney International 49: 1304–1313.

    Article  CAS  PubMed  Google Scholar 

  10. Capeillere-Blandin, C., V. Gausson, B. Descamps-Latscha, and V. Witko-Sarsat. 2004. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochimica et Biophysica Acta 1689: 91–102.

    Article  CAS  PubMed  Google Scholar 

  11. Selmeci, L., M. Székely, P. Soós, L. Seres, N. Klinga, and A. Geiger. 2006. Human blood plasma advanced oxidation protein products (AOPP) correlates with fibrinogen levels. Free Radical Research 40: 952–958.

    Article  CAS  PubMed  Google Scholar 

  12. Bochi, G.V., V.D. Torbitz, L.P. Cargnin, M.B. Sangoi, R.C. Santos, P. Gomes, et al. 2012. Fructose-1,6-bisphosphate and N-acetylcysteine attenuate the formation of advanced oxidation protein products, a new class of inflammatory mediators, in vitro. Inflammation 35: 1786–1792.

    Article  CAS  PubMed  Google Scholar 

  13. Hanasand, M., R. Omdal, K.B. Norheim, L.G. Gøransson, C. Brede, and G. Jonsson. 2013. Improved detection of advanced oxidation protein products in plasma. Clinica Chimica Acta 413: 901–906.

    Article  Google Scholar 

  14. Carr, Jr., and J. Hermans. 1978. Size and density of fibrin fibers from turbidity. Macromolecules 11: 46–50.

    Article  CAS  PubMed  Google Scholar 

  15. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  16. Witko-Sarsat, V., V. Gausson, A.T. Nguyen, M. Touam, T. Drüeke, F. Santangelo, et al. 2003. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney International 64: 82–91.

    Article  CAS  PubMed  Google Scholar 

  17. Margret, C.M., and C.C. Winterbourn. 1991. Oxidative damage to fibrinonectin I. Effects of the Neutrophil myeloperoxidase system and HOCl. The Archieves of Biochemistry and Biophysics 15: 53–59.

    Google Scholar 

  18. Weigandt, K.M., N. White, D. Chung, E. Ellingson, Y. Wang, and X. Fu. 2012. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen. Biophysical Journal 103: 2399–2407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kannel, W.B., P.A. Wolf, W.P. Castelli, and R.B. D’Agostino. 1987. Fibrinogen and risk of cardiovascular disease. The Framingham Study. JAMA 258: 1183–1186.

    Article  CAS  PubMed  Google Scholar 

  20. Stec, J.J., H. Silbershatz, G.H. Tofler, T.H. Matheney, P. Sutherland, I. Lipinska, et al. 2000. Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Population. Circulation 102: 1634–1638.

    Article  CAS  PubMed  Google Scholar 

  21. Upchurch Jr., G.R., N. Ramdev, M.T. Walsh, and J. Loscalzo. 1998. Prothrombotic consequences of the oxidation of fibrinogen and their inhibition by aspirin. Journal of Thrombosis and Thrombolysis 5: 9–14.

    Article  CAS  Google Scholar 

  22. Belisario, M.A., C. Di Domenico, A. Pelagalli, R. Della Morte, and N. Staiano. 1997. Metal-ion catalyzed oxidation affects fibrinogen activity on platelet aggregation and adhesion. Biochimie 79: 449–455.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by scholarships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil).

Conflict of Interest

There are no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Noal Moresco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torbitz, V.D., Bochi, G.V., de Carvalho, J.A.M. et al. In Vitro Oxidation of Fibrinogen Promotes Functional Alterations and Formation of Advanced Oxidation Protein Products, an Inflammation Mediator. Inflammation 38, 1201–1206 (2015). https://doi.org/10.1007/s10753-014-0085-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0085-x

KEY WORDS

Navigation