Skip to main content
Log in

Body-centered-cubic structure as a basis for deriving the intermetallic crystal structures

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A model has been devised to derive the intermetallic structure from the bcc- Fe unit cell. The fundamental finding is of special interest because the recent investigation clarifies that there is substantial evidence that atomic arrangements of transition metal-rich amorphous alloys are made of distorted bcc structure. The disordered bcc structure is thermodynamically in a metastable state, the heat treatment leads by crystallization of amorphous alloys to a stable state. In the past, a great deal has been made to describe the process of crystallization of amorphous alloys, but unfortunately, the disordered bcc-Fe regions of amorphous alloys have been neglected. Since the crystallization process takes place from the disordered bcc-regions of amorphous state, it is advisable to reexamine, discuss, and, where necessary to modify the product of the crystallization by the experimental achievements. It is therefore the objective of the present investigation to devise a model based on experimental facts. The atomic size of metalloid atoms determines the crystallization and crystal growth of amorphous alloy. Regardless of their structure, Mössbauer investigation on Fe-rich Metal-Metalloid alloys indicates that the metalloid atoms such as B, P, C, and Ge tend to act with iron by spending their electrons into the Fe 3d-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. S. Barrett and T.B. Massalski, Structure of Metals, Pergamon Press Oxford, (1980) p. 230.

  2. Nguyen, M.C., Zhao, X., Ji, M., Wang, C.Z., Harmon, B., Ho, K.M.: J. Appl Phys 111, 07E338 (2012). https://doi.org/10.1063/1.3677929

    Article  Google Scholar 

  3. Pan, S.P., Feng, S.D., Qiao, J.W., Wang, W.M., Qin, J.Y.: Sci. Rep. 5, 16956 (2015). https://doi.org/10.1038/srep16956/

    Article  ADS  Google Scholar 

  4. Ghafari, M., Gleiter, H., Feng, T., Ohara, K., Hahn, H.: J. Mate. Sci. Eng. 5, 299 (2016). https://doi.org/10.4172/2169-0022.1000299

    Article  Google Scholar 

  5. R. Witte, T. Feng, J. X. Fang, A. Fischer, M. Ghafari, R. Kruk, R. A. Brand, D. Wang, H. Hahn and H. Gleiter, Appl. Phys. Lett. 103 (2013) 073106–1. http://apl.aip.org/resource/1/APPLAB/v103/i7

  6. Ghafari, M., Louzguine-Luzgin, D.V., Hutchison, W.D., Feng, T., Campbell, S.J.: J. Phys.: Condens. Matter 30, 455701 (2018). https://doi.org/10.1088/1361-648x/aae505

    Article  ADS  Google Scholar 

  7. F. E. Luborski, Amorphous Metallic Alloys, Butterworths (1983) pp. 3–90. ISBN 0408110309.

  8. Takács, L.: Phys. Stat. Sol. (a) 56, 371 (1979). https://doi.org/10.1002/pssa.2210560142

    Article  ADS  Google Scholar 

  9. Vincze, I., Cadeville, M.C., Jesser, R., Takács, L.: J. Phys. 35, C6-533 (1974). https://doi.org/10.1051/jphyscol:19746113

    Article  Google Scholar 

  10. R. A, Brand, Mössbauer Fit Programs, Distributed by: WissEl Company GmbH, 2006, Germany

  11. Cooper, J.D., Gibb, T.C., Greenwood, N.N., Parish, R.V.: Trans. Faraday Soc. 60, 2097 (1964). https://doi.org/10.1039/TF9646002097

    Article  Google Scholar 

  12. Weisman, I.D., Swartzendruber, L.T., Bennet, L.H.: Phys. Rev. 177, 465 (1969). https://doi.org/10.1103/PhysRev.177.465

    Article  ADS  Google Scholar 

  13. Rundqvist, S.: Arkiv Kemi 16, 1 (1962). https://doi.org/10.3891/acta.chem.scand.16-0001

    Article  Google Scholar 

  14. Kiessling, R.: Act Chem. Scand 4, 209 (1950). https://doi.org/10.3891/acta.chem.scand.04-0209

    Article  Google Scholar 

  15. W. K. Choo, and R. Kaplow, Met., Trans. 8A (1977) 417. https://doi.org/10.1007/BF02661750

  16. C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry(2nd ed.). Pearson Prentice-Hal. (2005) p. 100. ISBN 0130–39913–2.

  17. Pauling, L.: J. Am. Chem. Soc. 53(4), 1367 (1930). https://doi.org/10.1021/ja01355a027

    Article  Google Scholar 

  18. Brittin, W.E.: J. Chem. Educ. 22(3), 145 (1945). https://doi.org/10.1021/ed022p145

    Article  Google Scholar 

  19. Pauling, L.: The Nature of the Chemical Bond (3rd ed.), pp. 111–120. Oxford University Press (1960).

  20. Clayden, J., Greeves, N., Warren, S., Wothers, P.: Organic Chemistry (1st ed.). (2001) p. 105. Oxford University Press. ISBN 978–0–19–850346–0.

  21. Schwarz, K., Mohn, P., Blaha, P., Kübler, J.: J. Phys. F: Met. Phys. 14, 2659 (1984). https://doi.org/10.1088/0305-4608/14/11/021

    Article  ADS  Google Scholar 

  22. Ghafari, M., Hahn, H., Gleiter, H., Sakurai, Y., Itou, M., Kamali, S.: Appl. Phys. Lett. 101, 243104 (2012). https://doi.org/10.1063/1.4769816

    Article  ADS  Google Scholar 

  23. Ghafari, M., Hahn, H., Feng, T., Kruk, R., Yan, M.: Hyperfine Interact 242, 2 (2021). https://doi.org/10.1007/s10751-021-01725-7

    Article  ADS  Google Scholar 

  24. Jauch, W., Reehuis, M.: Phys. Rev. B 76, 235121 (2007). https://doi.org/10.1103/PhysRevB.76.235121

    Article  ADS  Google Scholar 

  25. Novák, P., Chlan, V.: Phys. Rev. B 81, 174412–174421 (2010). https://doi.org/10.1103/PhysRevB.81.174412

    Article  ADS  Google Scholar 

  26. Freeman, A.J., Watson, R.E.: Phys. Rev. Let. 5(11), 498 (1960). https://doi.org/10.1103/PhysRevLett.5.498

    Article  ADS  Google Scholar 

  27. Kittel, C.: Introduction to Solid State Physics (2005), -8th ed-. John Wiley & Sons, Inc., ISBN 978–0–471–41526–8

  28. Neese, F.: Inorg. Chim. Acta 337, 181 (2002). https://doi.org/10.1016/S0020-1693(02)01031-9

    Article  Google Scholar 

  29. Jeffries, J.E., Hershkowitz, N.: Phys. Lett. 30A, 187 (1969). https://doi.org/10.1016/0375-9601(69)90927-X

    Article  ADS  Google Scholar 

  30. Murphy, K.A., Hershkowitz, N.: Phys. Rev. B 7, 23 (1960). https://doi.org/10.1103/PhysRevB.7.23

    Article  ADS  Google Scholar 

  31. Dubiel, S.M.: J. Alloys Compd. 488, 18 (2009). https://doi.org/10.1016/J.JALLCOM.2009.08.101

    Article  Google Scholar 

  32. Persson, K.: Materials Data on Fe2B (SG:123) by Materials Project (2016) p. 2020. https://materialsproject.org/docs/calculations. https://doi.org/10.17188/1274675

  33. Persson, K.: Materials Data on Ti3P (SG:86) by Materials Project. (2016). https://materialsproject.org/docs/calculations. https://doi.org/10.17188/1205511

  34. Bernas, H., Campbell, I.A., Fruchart, R.F.: J. Phys. Chem. Sol. 28, 17 (1967). https://doi.org/10.1016/0022-3697(67)90192-8

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghafari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions (HYPERFINE 2021), 5-10 September 2021, Brasov, Romania

Edited by Ovidiu Crisan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafari, M., Feng, T. Body-centered-cubic structure as a basis for deriving the intermetallic crystal structures. Hyperfine Interact 243, 21 (2022). https://doi.org/10.1007/s10751-022-01804-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-022-01804-3

Keywords

Navigation