Skip to main content
Log in

Nuclear inelastic scattering at the diiron center of ribonucleotide reductase from Escherichia coli

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The enzyme ribonucleotide reductase R2 catalyzes an important step in the synthesis of the building blocks of DNA, and harbors a dinuclear iron center required for activity. Not only the iron valence states but also the protonation of the iron ligands govern the enzymatic activity of the enzyme. We have performed Nuclear Inelastic Scattering (NIS) experiments on the 57Fe reconstituted ribonucleotide reductase R2 subunit from Escherichia coli (Ec R2a). Accompanying Mössbauer spectroscopic investigations show that the partial density of vibrational states (pDOS) of the 57Fe reconstituted Ec R2a sample contained contributions from both 57Fe-Ec R2a protein as well as unspecifically bound 57Fe. Subtraction of a featureless pDOS as obtained from protein-coated iron oxide particles allowed modeling of the contribution of non-specifically bound iron and thus the pDOS of 57Fe-Ec R2a could be obtained. Quantum-mechanics/molecular-mechanics (QM/MM) calculations of the whole 57Fe-Ec R2a protein with variations of the cofactor protonation were performed in order to assign characteristic bands to their corresponding molecular vibrational modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Högbom, M.: Metal use in ribonucleotide reductase R2, di-iron, di-manganese and heterodinuclear—an intricate bioinorganic workaround to use different metals for the same reaction. Metallomics 3, 110–120 (2011)

    Article  Google Scholar 

  2. Sahlin, M., Graeslund, A., Petersson, L., Ehrenberg, A., Sjoeberg, B.M.: Reduced forms of the iron-containing small subunit of ribonucleotide reductase from Escherichia coli. Biochemistry 28(6), 2618–2625 (1989)

    Article  Google Scholar 

  3. Mao, S.S., Yu, G.X., Chalfoun, D., Stubbe, J.: Characterization of C439SR1, a mutant of Escherichia coli ribonucleotide diphosphate reductase: evidence that C439 is a residue essential for nucleotide reduction and C439SR1 is a protein possessing novel thioredoxin-like activity. Biochemistry 31(40), 9752–9759 (1992)

    Article  Google Scholar 

  4. Sturgeon, B.E., Doug Burdi, D., Chen, S., Huynh, B.-H., Edmondson, D.E., Stubbe, J., Hoffman, B.M.: Reconsideration of X, the Diiron Intermediate Formed during Cofactor Assembly in E. coli Ribonucleotide Reductase. J. Am. Chem. Soc. 118(32), 7551–7557 (1996)

    Article  Google Scholar 

  5. Lynch, J.B., Juarez-Garcia, C., Münck, E., Que, L.J.: Mössbauer and EPR studies of the binuclear iron center in ribonucleotide reductase from Escherichia coli. J. Biol. Chem. 264(14), 8091–8096 (1989)

    Google Scholar 

  6. Nordlund, P., Sjöberg, B.-M., Eklund, H.: Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 345, 593–598 (1990)

    Article  ADS  Google Scholar 

  7. Högbom, M., Galander, M., Andersson, M., Kolberg, M., Hofbauer, W., Lassmann, G., Nordlund, P., Lendzian, F.: Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4-Å x-ray data, pdb ID 1MXR. Proc. Natl. Acad. Sci. USA 100(6), 3209–3214 (2003)

  8. Sjöberg, B.-M., Hahne, S., Karlsson, M., Jörnvall, H., Göransson, M., Uhlin, B.E.: Overproduction and purification of the B2 subunit of ribonucleotide reductase from Escherichia coli. J. Biol. Chem. 261, 5658–5662 (1986)

    Google Scholar 

  9. Sturhahn, W., Toellner, T.S., Alp, E.E., Zhang, X., Ando, M., Yoda, Y., Kikuta, S., Seto, M., Kimball, C.W., Dabrowski, B.: Phonon density of states measured by inelastic nuclear resonant scattering. Phys. Rev. Lett. 74(19), 3832–3835 (1995)

    Article  ADS  Google Scholar 

  10. Kohn, V.G., Chumakov, A.I.: DOS: Evaluation of phonon density of states from nuclear inelastic scattering. Hyperfine Interact. 125, 205–221 (2000)

    Article  Google Scholar 

  11. Janoschka, A., Svenconis, G., Schünemann, V.: A closed cycle-cryostat for high-field Mössbauer spectroscopy. J. Phys. Conf. Ser. 217, 012005 (2010)

  12. Bauer, T.O., Graf, D., Lamparter, T., Schünemann, V.: Characterization of the photolyase-like iron sulfurprotein PhrB from Agrobacterium tumefaciens by Mössbauer spectroscopy. Hyperfine Interact. 226, 445–449 (2014)

    Article  ADS  Google Scholar 

  13. Prisecaru, I.: WMOSS4 Mössbauer Spectral Analysis Software, 2009–2016. [online: http://www.wmoss.org]

  14. Trautwein, A.X., Bill, E., Bominaar, E.L., Winkler, H.: Iron-containing proteins and related analogs—complementary Mössbauer, EPR and magnetic susceptibility studies. In: Structure and bonding, vol. 78. Springer, Berlin (1991)

  15. Schünemann, V., Winkler, H.: Structure and dynamics of biomolecules studied by Mössbauer spectroscopy. Rep. Prog. Phys. 63, 263–353 (2000)

    Article  ADS  Google Scholar 

  16. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R.: Gaussian 09, Revision D.01. Wallingford (2009)

  17. Dennington, R., Keith, T., Millam, J.: GaussView, Version 5 (2009)

  18. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993)

    Article  ADS  Google Scholar 

  19. Stevens, W.J., Basch, H., Krauss, M.: Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J. Chem. Phys. 81(12), 6026–6033 (1984)

    Article  ADS  Google Scholar 

  20. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992)

    Article  Google Scholar 

  21. Paulsen, H., Winkler, H., Trautwein, A.X., Grünstreudel, H., Rusanov, V., Toftlund, H.: Measurement and simulation of nuclear inelastic-scattering spectra of molecular crystals. Phys. Revi. B 59(2), 975–984 (1999)

    Article  ADS  Google Scholar 

  22. Bollinger, J.M. Jr., Tong, W.H., Ravi, N., Huynh, B.H., Edmondson, D.E., Stubbe, J.: Mechanism of assembly of the tyrosyl radical-diiron (III) cofactor of E. coli ribonucleotide reductase: 1. Mössbauer characterization of the diferric radical precursor. J. Am. Chem. Soc. 116, 8015–8023 (1994)

    Article  Google Scholar 

  23. Kurtz, D.M.J.: Oxo- and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit. Chem. Rev. 90, 585–606 (1990)

    Article  Google Scholar 

  24. Ravi, N., Bollinger, J.M.J., Huyhn, B.H., Edmondson, D.E., Stubbe, J.: Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of E. Coli ribonucleotide reductase. 1. Mössbauer characterization of the diferric radical precursor. J. Am. Chem. Soc. 116, 8007–8014 (1994)

    Article  Google Scholar 

  25. Dong, Y., Que, L.J., Kauffmann, K., Münck, E.: An exchange-coupled complex with localized high-spin FeIV and FeIII sites of relevance to cluster X of Escherichia coli ribonucleotide reductase. J. Am. Chem. Soc. 117, 11377–11378 (1995)

    Article  Google Scholar 

  26. Mørup, S.: Paramagnetic and Superparamagnetic Relaxation Phenomena Studied by Mössbauer Spectroscopy. Polyteknisk Forlag, Lyngby (1981)

    Google Scholar 

  27. Cornell, R.M., Schwertmann, U.: The Iron Oxides, 2nd edn. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  28. Marx, J., Huang, H., Faus, I., Rackwitz, S., Wolny, J.A., Schlage, K., Ulber, R., Wille, H.-C., Schünemann, V.: Simultaneous characterization of protein coated iron oxide nanoparticles with nuclear inelastic scattering and atomic force microscopy. Hyperfine Interact. 226, 661–665 (2014)

    Article  ADS  Google Scholar 

  29. Sjoberg, B.-M., Sanders-Loehr, J., Loehr, T.M.: Identification of a hydroxide ligand at the iron center of ribonucleotide reductase by resonance raman spectroscopy. Biochemistry 26, 4242–4247 (1987)

    Article  Google Scholar 

  30. Sanders-Loehr, J., Wheeler, W.D., Shiemke, A.K., Averill, B.A., Loehr, T.M.: Electronic and Raman spectroscopic properties of oxo-bridged dinuclear iron centers in proteins and model compounds. J. Am. Chem. Soc. 111, 8084–8093 (1989)

    Article  Google Scholar 

  31. Younker, J.M., Krest, C.M., Jiang, W., Krebs, C., Bollinger, J.M.J., Green, M.T.: Structural analysis of the Mn(IV)/Fe(III) cofactor of chlamydia trachomatis ribonucleotide reductase by extended X-ray absorption fine structure spectroscopy and density functional theory calculations. J. Am. Chem. Soc. 130(45), 15022–15027 (2008)

    Article  Google Scholar 

  32. Kwak, Y., Wei, Y., Dassama, L.M.K., Park, K., Bell, C.B., Liu, L.V., Wong, S.D., Saito, M., Kobayashi, Y., Kitao, S., Seto, M., Yoda, Y., Alp, E., Zhao, J., Bollinger, J.-M.J., Krebs, C., Solomon, E.I.: Geometric and electronic structure of the Mn(IV)Fe(III) cofactor in class Ic ribonucleotide reductase: correlation to the class Ia binuclear non-heme iron enzyme. J. Am. Chem. Soc. 135, 17573–17584 (2013)

    Article  Google Scholar 

  33. Kositzki, R., Mebs, S., Marx, J., Griese, J.J., Schuth, N., Högbom, M., Schünemann, V., Haumann, M.: Protonation state of MnFe and FeFe cofactors in a ligand-binding oxidase revealed by X-ray absorption, emission, and vibrational spectroscopy and QM/MM calculations. Inorg. Chem. 55(19), 9869–9885 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the German Federal Ministry of Education and Research and the Swedish Research Council via the German-Swedish Röntgen-Ångström-Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marx.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3–8 September 2017

Edited by Valentin Semenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marx, J., Srinivas, V., Faus, I. et al. Nuclear inelastic scattering at the diiron center of ribonucleotide reductase from Escherichia coli . Hyperfine Interact 238, 82 (2017). https://doi.org/10.1007/s10751-017-1452-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-017-1452-4

Keywords

Navigation