Skip to main content

Advertisement

Log in

Decomposition rates appear stable despite elevated shrimp abundances following hurricanes in montane streams, Puerto Rico

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Leaf litter decomposition is a key ecosystem process in headwater streams, influenced by physical fragmentation, microbial degradation and feeding activity by stream biota. In some tropical streams, feeding by freshwater shrimps can exert strong top-down control on leaf litter decomposition, however, variation in shrimp macroconsumer effects across small spatial scales or among years is not well-known. We ran 50-day macroconsumer exclusion experiments to measure shrimp effects on leaf decomposition in two adjacent headwater streams in Puerto Rico, in 2017 (immediately prior to two Category 4 and 5 hurricanes) and again in 2018 and 2019, to assess shrimp effects in the context of post-hurricane conditions that included reduced canopy cover and higher shrimp (Atya and Xiphocaris) counts. Leaf decomposition was faster when shrimp had access to leaf packs, but only in the study stream with larger pools, which also had higher overall shrimp counts. However, increased shrimp abundances following the hurricanes did not result in faster decomposition, potentially because shrimp diets shifted toward algae post-hurricanes when canopies were more open. We conclude that shrimp effects on leaf litter breakdown may vary between adjacent streams that differ in habitat conditions and that increasing local shrimp abundances may fail to accelerate decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Modified from Hudson 2021)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

https://github.com/Max-Kelly/LLDecomp_17-19

References

  • Andrade, C. M., V. Neres-Lima & T. P. Moulton, 2017. Differentiating the roles of shrimp and aquatic insects in leaf processing in a Neotropical stream. Marine and Freshwater Research 68: 1695.

    Article  Google Scholar 

  • Benfield, E. F., K. M. Fritz & S. D. Tiegs, 2017. Leaf-litter breakdown. In Lamberti, G. A. & F. R. Hauer (eds), Methods in Stream Ecology 3rd ed. Elsevier, London: 71–82.

    Chapter  Google Scholar 

  • Bobeldyk, A. M. & A. Ramírez, 2007. Leaf breakdown in a tropical headwater stream (Puerto Rico): the role of freshwater shrimps and detritivorous insects. Journal of Freshwater Ecology 22: 581–590.

    Article  CAS  Google Scholar 

  • Boyero, L., R. G. Pearson, C. Hui, M. O. Gessner, J. Pérez, M. A. Alexandrou, M. A. S. Graça, B. J. Cardinale, R. J. Albariño, M. Arunachalam, L. A. Barmuta, A. J. Boulton, A. Bruder, M. Callisto, E. Chauvet, R. G. Death, D. Dudgeon, A. C. Encalada, V. Ferreira, R. Figueroa, A. S. Flecker, J. F. Gonçalves, J. Helson, T. Iwata, T. Jinggut, J. Mathooko, C. Mathuriau, C. M’Erimba, M. S. Moretti, C. M. Pringle, A. Ramírez, L. Ratnarajah, J. Rincon & C. M. Yule, 2016. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proceedings of the Royal Society B: Biological Sciences 283: 20152664.

    Article  PubMed Central  Google Scholar 

  • Brokaw, N., J. K. Zimmerman, M. R. Willig, G. R. Camilo, A. P. Covich, T. A. Crowl, N. Fetcher, B. L. Haines, D. J. Lodge, A. E. Lugo, R. W. Myster, C. M. Pringle, J. M. Sharpe, F. N. Scatena, T. D. Schowalter, W. L. Silver, J. Thompson, D. J. Vogt, K. A. Vogt, R. B. Waide, L. R. Walker, L. L. Woolbright, J. M. Wunderle Jr. & X. Zou, 2012. Response to Disturbance. In Brokaw, N., T. A. Crowl, A. E. Lugo, W. H. Mcdowell, F. N. Scatena, R. B. Waide & M. R. Willig (eds), A Caribbean Forest Tapestry: The Multidimensional Nature of Disturbance and Response Oxford University Press Inc, New York: 201–271.

    Chapter  Google Scholar 

  • Chappell, J., S. McKay, M. Freeman & C. Pringle, 2019. Long-term (37 years) impacts of low-head dams on freshwater shrimp habitat connectivity in northeastern Puerto Rico. River Research & Applications. 35: 1034–1043. https://doi.org/10.1002/rra.3499.

    Article  Google Scholar 

  • Covich, A. P., 1988. Atyid shrimp in the headwaters of the Luquillo Mountains, Puerto Rico: Filter feeding in natural and artificial streams. SIL Proceedings 1922–2010(23): 2108–2113.

    Google Scholar 

  • Covich, A. P., T. A. Crowl, S. L. Johnson, D. Varza & D. L. Certain, 1991. Post-hurricane Hugo increases in atyid shrimp abundances in a Puerto Rican montane stream. Biotropica 23: 448–454.

    Article  Google Scholar 

  • Covich, A. P., T. A. Crowl & F. N. Scatena, 2003. Effects of extreme low flows on freshwater shrimps in a perennial tropical stream. Freshwater Biology 48: 1199–1206.

    Article  Google Scholar 

  • Covich, A. P., T. A. Crowl & T. Heartsill-Scalley, 2006. Effects of drought and hurricane disturbances on headwater distributions of palaemonid river shrimp (Macrobrachium spp.) in the Luquillo Mountains, Puerto Rico. Journal of the North American Benthological Society 25: 99–107.

    Article  Google Scholar 

  • Crook, K. E., F. N. Scatena & C. M. Pringle, 2007. Water withdrawn from the Luquillo Experimental Forest, 2004. U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry, San Juan, PR: IITF-GTR-36, https://www.fs.usda.gov/treesearch/pubs/30058.

  • Crowl, T. A., W. H. McDowell, A. P. Covich & S. L. Johnson, 2001. Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology 82: 775–783.

    Article  Google Scholar 

  • Denwood, M. J., 2016. runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. Journal of Statistical Software 71: 1–25.

    Article  Google Scholar 

  • Dobson, M., J. M. Mathooko, F. K. Ndegwa & C. M’Erimba, 2004. Leaf litter processing rates in a Kenyan highland stream, the Njoro River. Hydrobiologia 519: 207–210.

    Article  Google Scholar 

  • Dudgeon, D., F. K. W. Cheung & S. K. Mantel, 2010. Foodweb structure in small streams: do we need different models for the tropics? Journal of the North American Benthological Society 29: 395–412.

    Article  Google Scholar 

  • Ferreira, V. G., 2006. Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Archiv Für Hydrobiologie 165: 493–513.

    Article  CAS  Google Scholar 

  • Gelman, A., and J. Hill. 2007. Fitting a multilevel model using R and BUGS. Page 352. data analysis using regression and multilevel/hierarchical models. Cambridge University Press

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A Perspective on leaf litter breakdown in Streams. Oikos 85: 377–384.

    Article  Google Scholar 

  • Guo, F., M. J. Kainz, F. Sheldon & S. E. Bunn, 2016. The importance of high-quality algal food sources in stream food webs - current status and future perspectives. Freshwater Biology 61: 815–831.

    Article  CAS  Google Scholar 

  • Gutiérrez-Fonseca, P. E., A. Ramírez, C. M. Pringle, P. J. Torres, W. H. McDowell, A. Covich, T. Crowl & O. Pérez-Reyes, 2020. When the rainforest dries: drought effects on a montane tropical stream ecosystem in Puerto Rico. Freshwater Science 39: 197–212.

    Article  Google Scholar 

  • Gutiérrez-Fonseca, P. E., C. M. Pringle, A. Ramírez, J. E. Gómez & P. García, 2023. Hurricane disturbance drives trophic changes in neotropical mountain stream food webs. Ecology. https://doi.org/10.1002/ecy.4202.

    Article  PubMed  Google Scholar 

  • Heard, S. B., G. A. Schultz, C. B. Ogden & T. C. Griesel, 1999. Mechanical abrasion and organic matter processing in an Iowa stream. Hydrobiologia 400: 179–186.

    Article  Google Scholar 

  • Heartsill Scalley, T., 2017. Insights on forest structure and composition from long-term research in the Luquillo mountains. Forests 8: 204.

    Article  Google Scholar 

  • Ho, B. S. K. & D. Dudgeon, 2016. Are high densities of fishes and shrimp associated with top- down control of tropical benthic communities? A test in three Hong Kong streams. Freshwater Biology 61: 57–68.

    Article  Google Scholar 

  • Hudson, T.E. 2021, Changes in algal community composition in response to drought and hurricanes Irma/Maria in a montane tropical stream in Puerto Rico; a long-term perspective. Master’s Thesis.

  • IPCC (2022) Climate Change 2022: Impacts, Adaptation and Vulnerability. In: H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.) Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781009325844.

  • Irons, J. G., M. W. Oswood, R. J. Stout & C. M. Pringle, 1994. Latitudinal patterns in leaf litter breakdown: is temperature really important? Freshwater Biology 32: 401–411.

    Article  Google Scholar 

  • Jennings, L. N., J. Douglas, E. Treasure & G. González, 2014. Climate change effects in El Yunque National Forest, Puerto Rico, and the Caribbean region. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC: SRS-GTR-193, https://www.fs.usda.gov/treesearch/pubs/45918.

  • Johnson, S. L. & A. P. Covich, 2000. The importance of night-time observations for determining habitat preferences of stream biota. Regulated Rivers: Research & Management 16: 91–99.

    Article  Google Scholar 

  • Kuehn, K. A., S. N. Francoeur, R. H. Findlay & R. K. Neely, 2014. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95: 749–762.

    Article  PubMed  Google Scholar 

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters: Effects of drought in streams. Freshwater Biology 48: 1161–1172.

    Article  Google Scholar 

  • Lau, D. C. P., K. M. Y. Leung & D. Dudgeon, 2009. Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society 28: 426–439.

    Article  Google Scholar 

  • Mancinelli, G., F. Sangiorgio & A. Scalzo, 2013. The effects of decapod crustacean macroconsumers on leaf detritus processing and colonization by invertebrates in stream habitats: A meta-analysis: The role of crustacean macroconsumers. International Review of Hydrobiology 98: 206–216.

    Article  Google Scholar 

  • March, J. G. & C. M. Pringle, 2003. Food web structure and basal resource utilization along a tropical island stream continuum, Puerto Rico. Biotropica 35: 84–93.

    Google Scholar 

  • March, J. G., J. P. Benstead, C. M. Pringle & M. W. Ruebel, 2001. Linking shrimp assemblages with rates of detrital processing along an elevational gradient in a tropical stream. Canadian Journal of Fisheries and Aquatic Sciences 58: 470–478.

    Article  Google Scholar 

  • Marks, J. C., 2019. Revisiting the fates of dead leaves that fall into streams. Annual Review of Ecology, Evolution, and Systematics 50: 547–568.

    Article  Google Scholar 

  • Moulton, T. P., C. M. Andrade & V. Neres-Lima, 2019. The outcome of an exclusion experiment depends on the method: shrimps, shredders and leaf breakdown in a tropical stream. Freshwater Science 38: 131–141.

    Article  Google Scholar 

  • Neres-Lima, V., E. F. Brito, F. A. M. Krsulović, A. M. Detweiler, A. E. Hershey & T. P. Moulton, 2016. High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading: Autochthonous basal food source in a tropical stream. International Review of Hydrobiology 101: 132–142.

    Article  Google Scholar 

  • Pérez-Reyes, O., T. A. Crowl, P. J. Hernández-García, R. Ledesma-Fusté, F. A. Villar-Fornes & A. P. Covich, 2013. Freshwater decapods of Puerto Rico: a checklist and reports of new localities. Zootaxa 3717: 329.

    Article  PubMed  Google Scholar 

  • Plummer, M, 2016. rjags: Bayesian graphical models using MCMC. R package version 4-6. Retrieved from http://CRAN.R-project.org/package=rjags

  • Plummer, M., 2017. JAGS Version 4.3.0 User Manual

  • Plummer, M., Best, N., Cowles, K., & Vines, K., 2006. CODA: Convergence diagnosis and output analysis for MCMC. R News, 6:7–11. 60

  • Pringle, C. M., G. A. Blake, A. P. Covich, K. M. Buzby & A. Finley, 1993. Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass. Oecologia 93: 1–11.

    Article  PubMed  Google Scholar 

  • Pringle, C. M., N. Hemphill, W. H. McDowell, A. Bednarek & J. G. March, 1999. Linking pecies and ecosystems: different biotic assemblages cause interstream differences in organic matter. Ecology 80: 1860–1872.

    Article  Google Scholar 

  • Pyron, M., A. P. Covich & R. W. Black, 1999. On the relative importance of pool morphology and woody debris to distributions of shrimp in a Puerto Rican headwater stream. Hydrobiologia 405: 207–215.

    Article  Google Scholar 

  • Quiñones, M., I. K. Parés, W. A. Gould, G. González, K. McGinley, and P. Ríos, 2018. El Yunque National Forest and Luquillo Experimental Forest Atlas. U.S. Department of Agriculture, Forest Service. Río Piedras, Puerto Rico, USA.

  • Ramírez, A., 2021. Prieta streams- discharge and water level ver 210373. Environmental Data Initiative. https://doi.org/10.6073/pasta/6d421e346ebb9728ade7182c90d2d3ca.

    Article  Google Scholar 

  • Ramírez, A. J. Gomez, & M.C. Leon, 2021a. StreamFRE: Downstream leaf litter exports in Prieta and lateral and vertical leaf litter inputs. ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/a2b8170a06c5d90978fd9b5225c50a64

    Article  Google Scholar 

  • Ramírez, A., J. Gomez & M. C. Leon, 2021b. StreamFRE: Pool area and depth in Prieta Streams ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/4aa99fc65d36596704f925cbb2e15434.

    Article  Google Scholar 

  • Ramírez, A., J. Gomez & M. C. Leon, 2021c. StreamFRE-Shrimp assemblages in Prieta Stream ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/fcbe4dccff85f650496f90bc2889dba7.

    Article  Google Scholar 

  • Ramírez, A., J. Gomez & P. Gutierrez-Fonseca, 2021d. StreamFRE: Canopy cover over Prieta stream ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/62d2f4bf0eb4753d5266d9c7764702a8.

    Article  Google Scholar 

  • Rincón, J. & A. Covich, 2014. Effects of insect and decapod exclusion and leaf litter species identity on breakdown rates in a tropical headwater stream. Revista de Biología Tropical 62: 143.

    Article  PubMed  Google Scholar 

  • Scatena, F. N., J. F. Blanco, K. H. Beard, R. B. Waide, A. E. Lugo, N. Brokaw, W. L. Silver, B. L. Haines & J. K. Zimmerman, 2012. Disturbance Regime. In Brokaw, N., T. A. Crowl, A. E. Lugo, W. H. Mcdowell, F. N. Scatena, R. B. Waide & M. R. Willig (eds), A Caribbean Forest Tapestry: The Multidimensional Nature of Disturbance and Response Oxford University Press Inc, New York: 164–200.

    Chapter  Google Scholar 

  • Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29: 118–146.

    Article  Google Scholar 

  • Tiegs, S. D., D. M. Costello, M. W. Isken, G. Woodward, P. B. McIntyre, M. O. Gessner, E. Chauvet, N. A. Griffiths, A. S. Flecker, V. Acuña, R. Albariño, D. C. Allen, C. Alonso, P. Andino, C. Arango, J. Aroviita, M. V. M. Barbosa, L. A. Barmuta, C. V. Baxter, T. D. C. Bell, B. Bellinger, L. Boyero, L. E. Brown, A. Bruder, D. A. Bruesewitz, F. J. Burdon, M. Callisto, C. Canhoto, K. A. Capps, M. M. Castillo, J. Clapcott, F. Colas, C. Colón-Gaud, J. Cornut, V. Crespo-Pérez, W. F. Cross, J. M. Culp, M. Danger, O. Dangles, E. de Eyto, A. M. Derry, V. D. Villanueva, M. M. Douglas, A. Elosegi, A. C. Encalada, S. Entrekin, R. Espinosa, D. Ethaiya, V. Ferreira, C. Ferriol, K. M. Flanagan, T. Fleituch, J. J. Follstad Shah, A. Frainer, N. Friberg, P. C. Frost, E. A. Garcia, L. García Lago, P. E. García Soto, S. Ghate, D. P. Giling, A. Gilmer, J. F. Gonçalves, R. K. Gonzales, M. A. S. Graça, M. Grace, H.-P. Grossart, F. Guérold, V. Gulis, L. U. Hepp, S. Higgins, T. Hishi, J. Huddart, J. Hudson, S. Imberger, C. Iñiguez-Armijos, T. Iwata, D. J. Janetski, E. Jennings, A. E. Kirkwood, A. A. Koning, S. Kosten, K. A. Kuehn, H. Laudon, P. R. Leavitt, A. L. Lemes da Silva, S. J. Leroux, C. J. LeRoy, P. J. Lisi, R. MacKenzie, A. M. Marcarelli, F. O. Masese, B. G. McKie, A. Oliveira Medeiros, K. Meissner, M. Miliša, S. Mishra, Y. Miyake, A. Moerke, S. Mombrikotb, R. Mooney, T. Moulton, T. Muotka, J. N. Negishi, V. Neres-Lima, M. L. Nieminen, J. Nimptsch, J. Ondruch, R. Paavola, I. Pardo, C. J. Patrick, E. T. H. M. Peeters, J. Pozo, C. Pringle, A. Prussian, E. Quenta, A. Quesada, B. Reid, J. S. Richardson, A. Rigosi, J. Rincón, G. Rîşnoveanu, C. T. Robinson, L. Rodríguez-Gallego, T. V. Royer, J. A. Rusak, A. C. Santamans, G. B. Selmeczy, G. Simiyu, A. Skuja, J. Smykla, K. R. Sridhar, R. Sponseller, A. Stoler, C. M. Swan, D. Szlag, F. Teixeira-de Mello, J. D. Tonkin, S. Uusheimo, A. M. Veach, S. Vilbaste, L. B. M. Vought, C.-P. Wang, J. R. Webster, P. B. Wilson, S. Woelfl, M. A. Xenopoulos, A. G. Yates, C. Yoshimura, C. M. Yule, Y. X. Zhang & J. A. Zwart, 2019. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances 5: 0486.

    Article  Google Scholar 

  • Torres, P.J., 2020. Low densities and extirpation of freshwater shrimps assemblages disrupt ecosystem-level properties and processes in high elevations in Puerto Rico. Doctoral Dissertation

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fish and Aquatic Science 37: 130–137.

    Article  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.

    Article  CAS  Google Scholar 

  • Weaver, P.L., 1997. Sloanea Berteriana Choisy Motillo. Elaeocarpaceae. Elaeocarpus Family; USDA Forest Service, International Institute of Tropical Forestry: Rio Piedras, Puerto Rico

  • Wohl, E., S. K. Hinshaw, J. E. Scamardo & P. E. Gutiérrez-Fonseca, 2019. Transient organic jams in Puerto Rican mountain streams after hurricanes: Transient organic jams Puerto Rico. River Research and Applications 35: 280–289.

    Article  Google Scholar 

  • Wright, M. S. & A. P. Covich, 2005. The effect of macroinvertebrate exclusion on leaf breakdown rates in a tropical headwater stream. Biotropica 37: 403–408.

    Article  Google Scholar 

  • Yang, C., S. J. Wenger, A. T. Rugenski, I. S. Wehrtmann, S. Connelly & M. C. Freeman, 2020. Freshwater crabs (Decapoda: Pseudothelphusidae) increase rates of leaf breakdown in a neotropical headwater stream. Freshwater Biology 65: 1673–1684.

    Article  CAS  Google Scholar 

  • Zimmerman, J. K., T. E. Wood, G. González, A. Ramirez, W. L. Silver, M. Uriarte, M. R. Willig, R. B. Waide & A. E. Lugo, 2021. Disturbance and resilience in the Luquillo Experimental Forest. Biological Conservation 253: 108891.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Alan Covich (University of Georgia) who provided key insights into the field site and comments on Kelly’s masters thesis. Any use of trade, product, or firm names does not imply endorsement by the U.S. Government.

Funding

This work was partially funded by the Luquillo Long-Term Ecological Research Program funded by the US National Science Foundation (NSF Award: DEB-1831952).

Author information

Authors and Affiliations

Authors

Contributions

M-K wrote the master’s thesis from which he adapted this manuscript. Kelly also analyzed data, ran statistical analysis and made figures. MF provided leadership on the statistical analysis and provided comments on versions of the thesis and manuscript. PG-F, JEG, RP, and LL were responsible for running experiments reported in this manuscript, collected essential data, and provided background knowledge on study site and methods. AR provided editorial comments on early versions of the thesis. CP played a role in experimental design of experiments and provided comments throughout the thesis and manuscript. All authors contributed to editing the final manuscript.

Corresponding author

Correspondence to Max Kelly.

Ethics declarations

Competing interests

The authors have no financial, non-financial or competing interests to declare.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 619 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, M., Freeman, M., Gutiérrez-Fonseca, P.E. et al. Decomposition rates appear stable despite elevated shrimp abundances following hurricanes in montane streams, Puerto Rico. Hydrobiologia 851, 2329–2345 (2024). https://doi.org/10.1007/s10750-023-05458-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05458-2

Keywords

Navigation