Skip to main content
Log in

Phylogeny and genetic variability of Rotifer’s closest relatives Acanthocephala: an example from Croatia

  • ROTIFERA XVI
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The high intraspecific variability of the morphological characters of Acanthocephala can complicate their taxonomic classification. To solve this problem, molecular markers are used. Here, we present the identification and determination of genetic variability of four species of the Acanthocephala genera Pomphorhynchus, Acanthocephalus and Dentitruncus, obligate endoparasites of freshwater fishes. The DNA sequences of the three markers that evolve at different rates (18S rDNA, COI and ITS) were analysed. To put the genetic position of the Croatian Acanthocephala specimens in a broader context, the COI and ITS sequences of the other European specimens from the NCBI GenBank were used. Genetic structuring at the local level was minor or not visible at all, but in the context of European phylogeographic structuring, the Croatian P. laevis showed a clear grouping to the geographical subcluster Ponto-Caspian Balkans. Only two P. laevis Danubian haplotypes, which were not analysed morphologically, were assigned to the Ponto-Caspian Danube subclade together with the recently identified P. bosniacus from Austria. The haplotypes of P. tereticollis from Croatia were clustered within the two main European clades. In connection with the phylogeographic distribution of Acanthocephala and their hosts, we hypothesised possible phylogeographic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Generated DNA sequences files are available in NCBI Gen Bank.

References

  • Amin, O. M., F. Thielen, M. Münderle, H. Taraschewski & B. Sures, 2008. Description of a new echinorhynchid species (Acanthocephala) from the European eel, Anguilla anguilla, in Germany, with a key to species of Acanthocephalus in Europe. J. Parasitol. 94: 1299–1304.

    Article  PubMed  Google Scholar 

  • Amin, O. M., R. A. Heckmann, Z. Fiser, V. Zaksek, H. Herlyn & R. Kostanjsek, 2019. Description of Acanthocephalus anguillae balkanicus subsp. n. (Acanthocephala: Echinorhynchidae) from Proteus anguinus Laurenti (Amphibia: Proteidae) and the cave ecomorph of Asellus aquaticus (Crustacea: Asellidae) in Slovenia. Folia Parasitologia 66: 15. https://doi.org/10.14411/fp.2019.015.

    Article  CAS  Google Scholar 

  • Babić, I., 1935. O nalazima entoparazitičkih crva kod slatkovodnih riba. Veterinarski Arhiv 5: 356–367 (In Croatian).

    Google Scholar 

  • Bandelt, H. J., P. Forster & A. Rohl, 1999. Median-joining networks for interferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036.

    Article  CAS  PubMed  Google Scholar 

  • Bates, R. M. & C. R. Kennedy, 1990. Interactions between the acanthocephalans Pomphorhynchus laevis and Acanthocephalus anguillae in rainbow trout: testing an exclusion hypothesis. Parasitology 100: 435–444.

    Article  PubMed  Google Scholar 

  • Benesh, D. P., T. Hasu, L. R. Soumalainen, E. T. Valtonen & M. Tiirola, 2006. Reliability of mitochondrial DNA in an acanthocephalan: the problem of pseudogenes. International Journal of Parasitology 36: 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Ćaleta, M., Z. Marčić, I. Buj, D. Zanella, P. Mustafić, A. Duplić & S. Horvatić, 2019. A review of extant Croatian freshwater fish and lampreys. Croatian Journal of Fisheries 77(3): 137–234. https://doi.org/10.2478/cjf-2019-0016.

    Article  Google Scholar 

  • David, G., C. Staentzel, O. Schlumberger, M. Perrot-Minnot, J. Beisel & L. Hardion, 2018. A minimalist macroparasite diversity in the round goby of the Upper Rhine reduced to an exotic acanthocephalan lineage. Parasitology 145(8): 1020–1026. https://doi.org/10.1017/S0031182017002177.

    Article  PubMed  Google Scholar 

  • Dezfuli, B. S., A. Lui, G. Giovinazzo & L. Giari, 2008. Effect of acanthocephala infection on the reproductive potential of crustacean intermediate hosts. Journal of Invertebrate Pathology 98(1): 116–119.

    Article  CAS  PubMed  Google Scholar 

  • Emde, S., S. Rueckert, H. W. Palm & S. Klimpel, 2012. Invasive Ponto-Caspian amphipods and fish increase the distribution range of Acanthocephalan Pomphorhynchus tereticollis in the River Rhine. PLoS ONE 7: e53218. https://doi.org/10.1371/journal.pone.0053218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipović Marijić, V., I. Vardić Smrzlić & B. Raspor, 2013. Effect of acanthocephalan infection on metal, total protein and metallothionein concentrations in European chub from a Sava River section with low metal contamination. Science of the Total Environment 463–464: 772–780.

    Article  PubMed  Google Scholar 

  • Filipović Marijić, V., I. Vardić Smrzlić & B. Raspor, 2014. Does fish reproduction and metabolic activity influence metal levels in fish intestinal parasites, acanthocephalans, during fish spawning and post-spawning period? Chemosphere 112: 449–455.

    Article  PubMed  Google Scholar 

  • Garciá-Varela, M. & S. A. Nadler, 2005. Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. Journal of Parasitology 91: 1401–1409.

    Article  PubMed  Google Scholar 

  • Garciá-Varela, M. & G. Pérez-Ponce de León, 2008. Validating the systematic position of Profilicollis Meyer, 1931 and Hexaglandula Petrochenko, 1950 (Acanthocephala: Polymorphidae) using cytochrome C oxidase (cox1). Journal of Parasitolology 94: 212–217.

    Article  Google Scholar 

  • García-Varela, M., A. López-Jiménez, M. T. González-García, A. L. Sereno-Uribe & L. Andrade-Gómez, 2023. Contrasting the population genetic structure of a specialist (Hexaglandula corynosoma: Acanthocephala: Polymorphidae) and a generalist parasite (Southwellina hispida) distributed sympatrically in Mexico. Parasitology 150: 348–358. https://doi.org/10.1017/S0031182023000033.

    Article  PubMed Central  Google Scholar 

  • Giari, L., E. A. Fano, G. Castaldelli, D. Grabner & B. Sures, 2020. The ecological importance of amphipod–parasite associations for aquatic ecosystems. Water 12: 2429. https://doi.org/10.3390/w12092429.

    Article  CAS  Google Scholar 

  • Gibson, D., R. Bray, D. Hunt, B. Georgiev, T. Scholz, P. Harris, T. Bakke, T. Pojmanska, K. Niewiadomska, A. Kostadinova, V. Tkach, O. Bain, M.-C. Durette-Desset, L. Gibbons, F. Moravec, A. Petter, Z. Dimitrova, K. Buchmann, E. Valtonen & Y. de Jong, 2014. Fauna Europaea: helminths (animal parasitic). Biodiversity Data Journal 2: e1060. https://doi.org/10.3897/BDJ.2.e1060.

    Article  Google Scholar 

  • Gottstein, S., K. Žganec, I. Maguire, M. Kerovec & B. Jalžić, 2007. Viši rakovi slatkih i bočatih voda porječja rijeke Krke. In: Zbornik radova sa Sim-pozija Rijeka Krka i Nacionalni park Krka. Prirodna i kulturna baština,zaštita i održivi razvitak, 421–431 (in Croatian)

  • Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

    CAS  Google Scholar 

  • Herlyn, H., O. Piskurek, J. Schmitz, U. Ehlers & H. Zischler, 2003. The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequences. Molecular Phylogenetics and Evolution 26(1): 155–164. https://doi.org/10.1016/s1055-7903(02)00309-3.

    Article  CAS  PubMed  Google Scholar 

  • Hewitt, G. M., 1993. Post-glacial recolonization of European Biota. Biological Journal of the Linnean Society 68: 87–112.

    Article  Google Scholar 

  • Hohenadler, M. A. A., M. Nachev, F. Thielen, H. Taraschewski, D. Grabner & B. Sure, 2018. Pomphorhynchus laevis: An invasive species in the river Rhine? Biological Invasions 20: 207–217. https://doi.org/10.1007/s10530-017-1527-9.

    Article  Google Scholar 

  • Hohenadler, M. A. A., M. Nachev, M. Freese, J. D. Pohlmann, R. Hanel & B. Sures, 2019. How Ponto-Caspian invaders affect local parasite communities of native fish. Parasitology Research 118(9): 2543–2555. https://doi.org/10.1007/s00436-019-06399-3.

    Article  CAS  PubMed  Google Scholar 

  • HRN EN 14011, 2005. Fish sampling by electric power.

  • Kennedy, C. R., 2006. Ecology of the Acanthocephala, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Kralj, T., K. Žganec, R. Ćuk & D. Valić, 2022. Contribution of alien peracarid crustaceans to the biocontamination of benthic macroinvertebrate assemblages in Croatian large rivers. Limnetica 41(2): 181–199. https://doi.org/10.23818/limn.41.24.

    Article  Google Scholar 

  • Král’ová-Hromadová, I., D. F. Tietz, A. P. Shinn & M. Špakulová, 2003. ITS rDNA sequences of Pomphorhynchus laevis (Zoega in Müller, 1776) and P. lucyi William & Rogers, 1984 (Acanthocephala: Palaeacanthocephala). Systematic Parasitology 56: 141–145.

    Article  PubMed  Google Scholar 

  • Lagrue, C., 2017. Impacts of crustacean invasions on parasite dynamics in aquatic ecosystems: a plea for parasite-focused studies. International Journal for Parasitology-Parasites and Wildlife 6(3): 364–374. https://doi.org/10.1016/j.ijppaw.2017.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leigh, J. W. & D. Bryant, 2015. Popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6(9): 1110–1116. https://doi.org/10.1111/2041-210x.12410.

    Article  Google Scholar 

  • Lewisch, E., V. Solymos, K. Waldner, L. van der Vloedt, J. Harl, K. Bakran-Lebl, M. El-Matbouli & H. P. Fuehrer, 2020. Acanthocephalan parasites collected from Austrian fishes: molecular barcoding and pathological observations. Disease of Aquatic Organisms 139: 103–111. https://doi.org/10.3354/dao03471.

    Article  CAS  Google Scholar 

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11): 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Mijošek, T., V. Filipović Marijić, Z. Dragun, D. Ivanković, N. Krasnići & M. Erk, 2022. Efficiency of metal bioaccumulation in acanthocephalans, gammarids and fish in relation to metal exposure conditions in a karst freshwater ecosystem. Journal of Trace Elements in Medicine and Biology 73: 127037. https://doi.org/10.1016/j.jtemb.2022.127037.

    Article  CAS  PubMed  Google Scholar 

  • Mladineo, I., S. Zrnčić & D. Oraić, 2009. Severe helminthic infection of the wild brown trout (Salmo trutta) in Cetina River, Croatia. Bulletin of the European Association of Fish Pathologists 3: 86–91.

    Google Scholar 

  • Moravec, F., 2004. Metazoan Parasites of Salmonid Fishes of Europe, Academia, Prague:, 510.

    Google Scholar 

  • Nedić, Z., I. Vardić Smrzlić, S. Paras & V. Nikolić, 2019. Pomphorhynchus bosniacus Kiskarolj i Čanković 1969 (Acanthocephala), intestinal parasite from the Sava River, Bosnia and Herzegovina: new insights on phylogeny, infection dynamics and histopathology. Bulletin of the European Association of Fish Pathologists 39: 93–105.

    Google Scholar 

  • O’Mahony, E. M., D. G. Bradley, C. R. Kennedy & C. V. Holland, 2004. Evidence for the hypothesis of strain formation in Pomphorhynchus laevis (Acanthocephala): an investigation using mitochondrial DNA sequences. Parasitology 129: 341–347.

    Article  PubMed  Google Scholar 

  • Perrot-Minnot, M.-J., 2004. Larval morphology, genetic divergence, and contrasting levels of host manipulation between forms of Pomphorhynchus laevis (Acanthocephala). International Journal of Parasitolology 34: 45–54.

    Article  Google Scholar 

  • Perrot-Minnot, M.-J., M. Špakulova, R. Wattier, P. Kotlik, S. Duşen, A. Aydoğdu & C. Tougard, 2018. Contrasting phylogeography of two Western Palaearctic fish parasites despite similar life cycles. Journal of Biogeography 45: 101–115. https://doi.org/10.1111/jbi.13118.

    Article  Google Scholar 

  • Perrot-Minnot, M. J., C. S. Cozzarolo, O. Amin, D. Barčák, A. Bauer, V. Filipović Marijić, M. García-Varela, J. Servando Hernández-Orts, T. T. Le Yen, M. Nachev, M. Orosová, T. Rigaud, S. Šariri, R. Wattier, F. Reyda & B. Sures, 2023. Hooking the scientific community on thorny-headed worms: interesting and exciting facts, knowledge gaps and perspectives for research directions on Acanthocephala. Parasite 30: 23. https://doi.org/10.1051/parasite/2023026.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrochenko V. I., 1956. Acanthocephala of domestic and wild animals. Vol. I. Moscow: Izdatelstvo Akademii Nauk SSR (English translation by Israel Program of Scientific Translations, Keter Press, Jerusalem, Israel, 1971)

  • Pinacho-Pinacho, C. D., M. García-Varela, A. L. Sereno-Uribe & G. Pérez Ponce de León, 2018. A hyper-diverse genus of acanthocephalans revealed by tree-base and non-treebase species delimitation methods: ten cryptic species of Neoechinorhynchus in middle American freshwater fishes. Molecular Phylogenetic Evolution 127: 30–45. https://doi.org/10.1016/j.ympev.2018.05.023.

    Article  Google Scholar 

  • Reier, S., H. Sattmann, T. Schwaha, J. Harl, R. Konecny & E. Haring, 2019. An integrative taxonomic approach to reveal the status of the genus Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) in Austria. International Journal of Parasitolology: Parasites and Wildlife 8: 145–155. https://doi.org/10.1016/j.ijppaw.2019.01.009.

    Article  Google Scholar 

  • Reier, S., H. Sattmann, T. Schwaha, H.-P. Fuehrer & E. Haring, 2020. Unravelling the hidden biodiversity – the establishment of DNA barcodes of fishparasitizing Acanthocephala Koehlreuther, 1771 in view of taxonomic misidentifications, intraspecific variability and possible cryptic species. Parasitology 147: 1499–1508. https://doi.org/10.1017/S0031182020001316.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyjol, Y., B. Hugueny, D. Pont, P. G. Bianco, U. Beier, N. Caiola, F. Casals, I. Cowx, A. Economou, T. Ferreira, G. Haidvogl, R. Noble, A. De Sostoa, T. Vigneron & T. Virbickas, 2007. Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography 16: 65–75. https://doi.org/10.1111/j.1466-8238.2006.00264.x.

    Article  Google Scholar 

  • Ros, A. F. H., T. Basen, R. J. Teschner & A. Brinker, 2020. Morphological and molecular data show no evidence of the proposed replacement of endemic Pomphorhynchus tereticollis by invasive P. laevis in salmonids in southern Germany. PLoS ONE 15(6): e0234116. https://doi.org/10.1371/journal.pone.0234116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas-Valdez, R., J. J. Morrone & M. García-Varela, 2012. Molecular phylogenetics of Floridosentis Ward, 1953 (Acanthocephala: Neoechinorhynchidae) parasites of mullets (Osteichthyes) from Mexico, using 28S rDNA sequences. Journal of Parasitology 98: 855–862.

    Article  PubMed  Google Scholar 

  • Rosas-Valdez, R., J. J. Morrone, C. D. Pinacho-Pinacho, O. Domínguez-Domínguez & M. García-Varela, 2020. Genetic diversification of acanthocephalans of the genus Floridosentis Ward 1953 (Acanthocephala: Neoechinorhynchidae), parasites of mullets from the Americas. Infection, Genetics and Evolution 85: 104535. https://doi.org/10.1016/j.meegid.2020.104535.

    Article  CAS  PubMed  Google Scholar 

  • Šinžar, D., 1955. Prilog poznavanju entoparazita pastrmke Salmo trutta L. Glasnik Prirod Muzeja Srp Zemlje B 7: 4.

    Google Scholar 

  • Šinžar, D., 1956. Prilog poznavanju entoparazita pastrmke Salmo trutta L. Zbornik radova poljoprivrednog fakulteta, Beograd, IV, 165–170. (In Croatian)

  • Špakulová, M., M. Perrot-Minnot & B. Neuhaus, 2011. Resurrection of Pomphorhynchus tereticollis (Rudolphi, 1809) (Acanthocephala: Pomphorhynchidae) based on new morphological and molecular data. Helminthologia 48(4): 268–277. https://doi.org/10.2478/s11687-011-0038-y.

    Article  Google Scholar 

  • Steinauer, M. L., B. B. Nickol & G. Ortí, 2007. Cryptic speciation and patterns of phenotypic variation of variable acanthocephalan parasite. Molecular Ecology 16: 4097–4109. https://doi.org/10.1111/j.1365-294X.2007.03462.x.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., G. Stecher & S. Kumar, 2021. MEGA 11: molecular evolutionary genetics analysis Version 11. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msab120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Topić-Popović, N., I. Strunjak-Perović, A. Fonns, T. Vilsgaard-Espersen & E. Teskeredžić, 1999. Report of Pseudorhadinorhynchus salmothymi isolation from brown trout in Krka river (Croatia). Periodicum Biologorum 101: 273–275.

    Google Scholar 

  • Vardić Smrzlić, I., D. Valić, D. Kapetanović, Z. Dragun, E. Gjurčević, H. Ćetković & E. Teskeredžić, 2013. Molecular characterisation and infection dynamics of Dentitruncus truttae from trout (Salmo trutta and Oncorhynchus mykiss) in Krka River, Croatia. Veterinary Parasitology 197(3–4): 604–613.

    Google Scholar 

  • Vardić Smrzlić, I., D. Valić, D. Kapetanović, V. Filipović Marijić, E. Gjurčević & E. Teskeredžić, 2015. Pomphorhynchus laevis (Acanthocephala) from the Sava River Basin: new insights into strain formation, mtDNA-like sequences and dynamics of infection. Parasitology International 64: 243–250.

    Article  PubMed  Google Scholar 

  • Vogel, S. & H. Taraschewski, 2023. Intermediate host patterns of acanthocephalans in the Weser river system: co-invasion vs host capture. Parasitology 150: 426–433. https://doi.org/10.1017/S0031182023000124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayland, M. T., J. K. Vainio, D. I. Gibson, E. A. Herniou, T. D. J. Littlewood & R. Väinölä, 2015. The systematics of Echinorhynchus Zoega in Müller, 1776 (Acanthocephala, Echinorhynchidae) elucidated by nuclear and mitochondrial sequence data from eight European taxa. ZooKeys 484: 25–52. https://doi.org/10.3897/zookeys.484.9132.

    Article  Google Scholar 

  • Žganec, K., S. Gottstein & S. Hudina, 2009. Ponto-Caspian amphipods in Croatian large rivers. Aquatic Invasions 4(2): 327–335. https://doi.org/10.3391/ai.2009.4.2.4.

    Article  Google Scholar 

  • Žganec, K., S. Gottstein & P. Đurić, 2010. Distribution of native and alien gammarids (Crustacea: Amphipoda) along the course of the Una River. Natura Croatica 19(1): 141–150.

    Google Scholar 

  • Žganec, K., P. Lunko, A. Stroj, T. Mamos & M. Grabowski, 2016. Distribution, ecology and conservation status of two endemic amphipods, Echinogammarus acarinatus and Fontogammarus dalmatinus, from the Dinaric karst rivers, Balkan Peninsula. Annales De Limnologie – International Journal of Limnology 52: 13–26. https://doi.org/10.1051/limn/2015036.

    Article  Google Scholar 

  • Žganec, K., J. Lajtner, R. Ćuk, P. Crnčan, I. Pušić, A. Atanacković, T. Kralj, D. Valić, M. Jelić & I. Maguire, 2020. Alien macroinvertebrates in Croatian freshwaters. Aquatic Invasions 15(4): 593–615. https://doi.org/10.3391/ai.2020.

    Article  Google Scholar 

Download references

Acknowledgements

Damir Valić is gratefully acknowledged for the support provided in the field and laboratory work. We thank the staff of the Laboratory for Aquaculture and Pathology of Aquatic Organisms for outstanding logistical support and the members of the Croatian Science Foundation project IP-2020-02-8502 “Integrated evaluation of aquatic organism responses to metal exposure: gene expression, bioavailability, toxicity and biomarker responses (BIOTOXMET)” for their help in the field work.

Funding

Sampling was partially granted by a “Implementation of the program for monitoring the situation in freshwater fisheries—Group C—Kupa fishing area” (years 2010–2015); “Tests and monitoring of the biological quality of water for HPP Lešće” (years 2012–2015); “Program for monitoring the state of freshwater fisheries in 2008—Fishing area Sava: River Sutla” ; European Union FP6 SARIB Project (INCO-CT-2004–509160); “Ichthyological research of the Krka River” (2011). Financial support was partially provided by Croatian Science Foundation for the project IP-2020-02-8502 “Integrated evaluation of aquatic organism responses to metal exposure: gene expression, bioavailability, toxicity and biomarker responses (BIOTOXMET)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Vardić Smrzlić.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Maria Špoljar, Diego Fontaneto, Elizabeth J. Walsh & Natalia Kuczyńska-Kippen / Diverse Rotifers in Diverse Ecosystems

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2023_5372_MOESM1_ESM.tif

Supplementary file1 (TIF 2410 kb) Fig 1S. Phylogenetic analyses of members of three Acanthocephala genera from Croatia based on partial 18S gene sequence ( 1720 bp). Evolutionary history was inferred using the maximum likelihood method and the GTR model in MEGA11. The percentage of trees in which the associated taxa clustered is shown next to the branches.

10750_2023_5372_MOESM2_ESM.tif

Supplementary file2 (TIF 2728 kb) Fig 2S. Phylogenetic analyses of members of Acanthocephalus genera from Croatia and GenBank based on COI gene sequence ( 650 bp). Evolutionary history was inferred using the maximum likelihood method and the GTR model in MEGA11. The percentage of trees in which the associated taxa clustered is shown next to the branches. A. anguillae and A. lucii from Croatia are marked with different colours

10750_2023_5372_MOESM3_ESM.tif

Supplementary file3 (TIF 72997 kb) Fig 3A_S. Phylogenetic analyses of P. laevis specimens from Croatia and GenBank based on COI gene sequence. Analysis involved 243 sequences. Evolutionary history was inferred using the Maximum Likelihood method and the GTR model with discrete gamma distribution (+G) in MEGA11. The percentage of trees in which the associated taxa clustered is shown next to the branches. Croatian isolates are marked red.

10750_2023_5372_MOESM4_ESM.tif

Supplementary file4 (TIF 8528 kb) Fig 3B_S. Median joining network of P. laevis from Croatia and Europe based on the COI sequences (243 sequences) and performed in PopART 1.7. Mutation steps are indicated by vertical lines. Black dots represent haplotypes missing from the study sample. Coloured dots represent haplotypes from different sites, while the size of the dot indicates the number of haplotypes.

10750_2023_5372_MOESM5_ESM.jpg

Supplementary file5 (JPG 150 kb) Fig 4S. Phylogenetic analyses of P. laevis specimens from Croatia and GenBank based on ITS gene sequence. Evolutionary history was inferred using the maximum likelihood method and the HYK model in MEGA11. The percentage of trees in which the associated taxa clustered is shown next to the branches. Median joining network of P. laevis from Croatia and Europe based on the ITS sequences and performed in PopART 1.7. Mutation steps are indicated by vertical lines. Black dots represent haplotypes missing from the study sample. Coloured dots represent haplotypes from different sites, while the size of the dot indicates the number of haplotypes.

10750_2023_5372_MOESM6_ESM.jpg

Supplementary file6 (JPG 115 kb) Fig 5S. Phylogenetic analyses of P. tereticollis specimens from Croatia and GenBank based on COI gene sequence. Evolutionary history was inferred using the maximum likelihood method and the HYK model in MEGA11. The percentage of trees in which the associated taxa clustered is shown next to the branches. Median joining network of P. tereticollis from Croatia and Europe based on the COI sequences and performed in PopART 1.7. Mutation steps are indicated by vertical lines. Black dots represent haplotypes missing from the study sample. Coloured dots represent haplotypes from different sites, while the size of the dot indicates the number of haplotypes.

10750_2023_5372_MOESM7_ESM.jpg

Supplementary file7 (JPG 29 kb) Fig 6S. Median joining network of P. tereticollis from Croatia and Europe based on the ITS sequence and performed in PopART 1.7. Mutation steps are indicated by vertical lines. Black dots represent haplotypes missing from the study sample. Coloured dots represent haplotypes from different sites, while the size of the dot indicates the number of haplotypes.

10750_2023_5372_MOESM8_ESM.jpg

Supplementary file8 (JPG 116 kb) Fig 7S. Phylogenetic analyses of A. anguillae specimens from Croatia and GenBank based on COI gene sequence. Evolutionary history was inferred using the maximum likelihood method and the HYK model in MEGA11. The percentage of trees in which the associated taxa clustered is shown next to the branches. Median joining network of A. anguillae from Croatia and Europe based on the COI sequences and performed in PopART 1.7. Mutation steps are indicated by vertical lines. Black dots represent haplotypes missing from the study sample. Coloured dots represent haplotypes from different sites, while the size of the dot indicates the number of haplotypes.

Supplementary file9 (DOCX 12 kb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardić Smrzlić, I., Čolić, B., Kapetanović, D. et al. Phylogeny and genetic variability of Rotifer’s closest relatives Acanthocephala: an example from Croatia. Hydrobiologia 851, 2845–2860 (2024). https://doi.org/10.1007/s10750-023-05372-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05372-7

Keywords

Navigation