Skip to main content

Advertisement

Log in

Molecular ecology of the freshwater shrimp Caridina natalensis and comparative analysis with other amphidromous species (Decapoda, Teleostei, and Gastropoda)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Due to their life cycle shared between rivers and oceans, amphidromous organisms serve as intriguing models for studying biogeography. To investigate the implications of their unique life history, we examined the population structure of the amphidromous shrimp Caridina natalensis across its known range in the South Western Indian Ocean. A total of 118 specimens were collected from 7 islands (Mayotte, Mohéli, Mahé, Praslin, Silhouette, Mauritius and Madagascar) and the African mainland (South Africa), and their 16S rRNA and Cox1 mitochondrial genes were sequenced. Our findings reveal significant regional structure among archipelagos, suggesting complex patterns of dispersal involving successive events of extinction-recolonization. By conducting a comparative analysis with six other amphidromous species from the South Western Indian Ocean, based on literature sources, we were able to draw conclusions regarding the amphidromous biogeography of the area. Furthermore, we propose a novel classification of amphidromous species, considering their population structure and life history traits. We defined four categories of increasing dispersal abilities and decreasing genetic population structure: 1. Land-locked species; 2. Species with reduced or facultative amphidromy; 3. Species with common amphidromy; and 4. Super-amphidromous species. Lastly, we identified the Comoros Islands (namely Mayotte and Mohéli) as a critical area for the dispersal of amphidromous species, emphasizing the need for prioritizing conservation efforts in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdou, A., 2021. New taxonomic and phylogeographic data on three nominal species of the genus Septaria Férussac, 1807 (Gastropoda: Cycloneritida: Neritidae). Zootaxa 4915(1): 28–40. https://doi.org/10.11646/zootaxa.4915.1.2.

    Article  Google Scholar 

  • Abdou, A., P. Keith & R. Galzin, 2015. Freshwater neritids (Mollusca: Gastropoda) of tropical islands, amphidromy as a life cycle, a review. Revue D’écologie (terre Et Vie) 70(4): 387–397.

    Article  Google Scholar 

  • Abdou, A., C. Lord, P. Keith & R. Galzin, 2019. Phylogéographie de Neritina stumpffi Boettger, 1890 et Neritina canalis Sowerby, 1825 (Gastropoda, Cycloneritida, Neritidae). Zoosystema 41(12): 237–248. https://doi.org/10.5252/zoosystema2019v41a12.

    Article  Google Scholar 

  • Atkinson, J. M., 1977. Larval development of a freshwater prawn, Macrobrachium lar (Decapoda, Palaemonidae). Reared in the Laboratory. Crustaceana 33(2): 119–132. https://doi.org/10.1163/156854077x00025.

    Article  Google Scholar 

  • Bandelt, H. J., P. Forster & A. Rohl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16(1): 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036.

    Article  CAS  PubMed  Google Scholar 

  • Barber, P. H., S. R. Palumbi, M. V. Erdmann & M. K. Moosa, 2002. Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Molecular Ecology 11: 659–674.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, R. T., 2013. Amphidromy in shrimps: a life cycle between rivers and the sea. Latin American Journal of Aquatic Research 41(4): 633–650. https://doi.org/10.3856/vol41-issue4-fulltext-2.

    Article  Google Scholar 

  • Bernardes, S. C., A. R. Pepato, T. von Rintelen, K. von Rintelen, T. J. Page, H. Freitag & M. De Bruyn, 2017. The complex evolutionary history and phylogeography of Caridina typus (Crustacea: Decapoda): long-Distance dispersal and cryptic allopatric species. Scientific Reports. https://doi.org/10.1038/s41598-017-08494-w.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardes, S. C., K. von Rintelen, T. von Rintelen, A. R. Pepato, T. J. Page & M. de Bruyn, 2021. Ecological changes have driven biotic exchanges across the Indian Ocean. Scientific Reports 11(1): 1–10. https://doi.org/10.1038/s41598-021-02799-7.

    Article  CAS  Google Scholar 

  • Carini, G. & J. M. Hughes, 2004. Population structure of Macrobrachium australiense (Decapoda: Palaemonidae) in Western Queensland, Australia: the role of contemporary and historical processes. Heredity 93(4): 350–363. https://doi.org/10.1038/sj.hdy.6800510.

    Article  CAS  PubMed  Google Scholar 

  • Castelin, M., P. Feutry, M. Hautecoeur, G. Marquet, D. Wowor, G. Zimmermann & P. Keith, 2013. New insight on population genetic connectivity of widespread Amphidromous prawn Macrobrachium Lar (Fabricius, 1798) (Crustacea: Decapoda: Palaemonidae). Marine Biology 160(6): 1395–1406. https://doi.org/10.1007/s00227-013-2191-y.

    Article  Google Scholar 

  • Chubb, A. L., R. M. Zink & J. M. Fitzsimons, 1998. Patterns of mtDNA variation in hawaiian freshwater fishes: the phylogeographic consequences of Amphidromy. The Journal of Heredity 89(1): 8–16.

    Article  CAS  PubMed  Google Scholar 

  • Cook, D. B., S. Bernays, C. M. Pringle & J. M. Hughes, 2009. Marine dispersal determines the genetic population structure of migratory stream fauna of Puerto Rico: evidence from island-scale population recovery process. Journal of the North American Benthological Society 28: 709–718. https://doi.org/10.1899/09-008.1.

    Article  Google Scholar 

  • Crandall, E. D., J. R. Taffel & P. H. Barber, 2009. High gene flow due to pelagic larval dispersal among South Pacific Archipelagos in two Amphidromous gastropods (Neritomorpha: Neritidae). Heredity 104(6): 563–572. https://doi.org/10.1038/hdy.2009.138.

    Article  PubMed  Google Scholar 

  • Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. JModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772–772. https://doi.org/10.1038/nmeth.2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Mazancourt, V., M. Castelin, C. Renneville, M. C. Mlambo, G. Marquet & P. Keith, 2019. Revalidation of Caridina natalensis De Man, 1908 (Crustacea: Decapoda: Atyidae) in the South western Indian Ocean. Zootaxa 4543(3): 375–387. https://doi.org/10.11646/zootaxa.4543.3.3.

    Article  PubMed  Google Scholar 

  • de Mazancourt, V., W. Klotz, G. Marquet, B. Mos, D. C. Rogers & P. Keith, 2021. New Insights on Biodiversity and Conservation of Amphidromous Shrimps of the Indo-Pacific islands (Decapoda: Atyidae: Caridina). In Kawai, T. & D. C. Rogers (eds), Recent advances in freshwater crustacean biodiversity and conservation CRC Press, Boca Raton: 381–404.

    Chapter  Google Scholar 

  • Dennenmoser, S., M. Thel & C. D. Schubart, 2010. High genetic variability with no apparent geographic structuring in the mtDNA of the amphidromous river shrimp Cryphiops caementarius (Decapoda: Palemonidae) in northern-central Chile. Journal of Crustacean Biology 30: 762–765. https://doi.org/10.1651/09-3273.1.

    Article  Google Scholar 

  • Edgar, R. C., 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellien, C., R. Causse, U. Werner, N. Teichert & K. Rousseau, 2020. Looking for environmental and endocrine factors inducing the transformation of Sicyopterus lagocephalus (Pallas 1770) (Teleostei: Gobiidae: Sicydiinae) freshwater prolarvae into marine larvae. Aquat Ecol 54: 163–180. https://doi.org/10.1007/s10452-019-09734-z.

  • Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3): 564–567.

    Article  PubMed  Google Scholar 

  • Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2): 479–491. https://doi.org/10.5962/bhl.title.86657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrig, L., 2002. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecological Applications 12(2): 346–353. https://doi.org/10.1890/1051-0761(2002)012[0346:eohfot]2.0.co;2.

    Article  Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783–791.

    Article  PubMed  Google Scholar 

  • Feutry, P., P. Valade, J. R. Ovenden, P. J. Lopez, P. Keith, P. Feutry, P. Valade, J. R. Ovenden, P. J. Lopez & P. Keith, 2012. Pelagic larval duration of two diadromous species of Kuhliidae (Teleostei: Percoidei) from Indo-Pacific insular systems. Marine and Freshwater Research 63(5): 397–402. https://doi.org/10.1071/MF11243.

    Article  Google Scholar 

  • Feutry, P., A. Vergnes, D. Broderick, L. J. P. Keith & J. R. Ovenden, 2013. Stretched to the limit: can a short pelagic larval duration connect adult populations of an Indo-Pacific diadromous fish (Kuhlia rupestris)? Molecular Ecology 2013 22(6): 1518–1530.

    CAS  Google Scholar 

  • Fu, Y. X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2): 915–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita, J., K. Zenimoto, A. Iguchi, Y. Kai, M. Ueno & Y. Yamashita, 2016. Comparative phylogeography to test for predictions of marine larval dispersal in three Amphidromous shrimps. Marine Ecology Progress Series 560: 105–120. https://doi.org/10.3354/meps11911.

    Article  CAS  Google Scholar 

  • Gamoyo, M., D. Obura & C. J. C. Reason, 2019. Estimating connectivity through larval dispersal in the Western Indian Ocean. Journal of Geophysical Research: Biogeosciences 124(8): 2446–2459. https://doi.org/10.1029/2019JG005128.

    Article  Google Scholar 

  • García-Velazco, H., A. M. Maeda-Martínez, H. Obregón-Barboza, G. Rodríguez-Almaraz, J. L. Villalobos-Hiriart & G. Murugan, 2014. Evidence of oceanic dispersal of a disjunctly distributed Amphidromous shrimp in Western North America: First Record of Macrobrachium occidentale from the Baja California Peninsula. Journal of Crustacean Biology 34(2): 199–215. https://doi.org/10.1163/1937240X-00002217.

    Article  Google Scholar 

  • García-Velazco, H., A. M. Maeda-Martínez, H. Obregón-Barboza, O. Campos-Torres & G. Murugan, 2017. The systematics of the Mexican populations of Macrobrachium digueti (Bouvier, 1895) (Decapoda: Caridea: Palaemonidae). Journal of Crustacean Biology 37(2): 168–186. https://doi.org/10.1093/JCBIOL/RUX008.

    Article  Google Scholar 

  • Guindon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.

    Article  PubMed  Google Scholar 

  • Han, C., C. Lai, C. Huang, I.-C. Wang, H. Lin & W. Wang, 2022. Phylogeographic structuring of the Kuroshio-type prawn Macrobrachium japonicum (Decapoda: Palaemonidae) in Taiwan and Ryukyu Islands. Diversity 14(8): 617. https://doi.org/10.3390/d14080617.

    Article  CAS  Google Scholar 

  • Hanski, I., 1999. Metapopulation ecology, Oxford University Press:

    Google Scholar 

  • Heim-Ballew, H., K. N. Moody, M. J. Blum, P. B. McIntyre & J. D. Hogan, 2020. Migratory flexibility in native Hawai’ian amphidromous fishes. Journal of Fish Biology 96(2): 456–468. https://doi.org/10.1111/jfb.14224.

    Article  CAS  PubMed  Google Scholar 

  • Hoarau, P. E. & P. B. Valade, 2017. Note sur la fécondité de Caridina longirostris H. Milne Edwards, 1837 et de son évolution au cours de l’incubation sur une petite rivière du Nord de Mayotte, archipel des Comores, Sud-Ouest de l’océan Indien ( Decapoda : Atyidae ). Cahiers Scientifiques De L’océan Indien Occidental 8: 5–12.

    Google Scholar 

  • Holthuis, L. B., 1965. The Atyidae of Madagascar. Mémoires Du Muséum National D’histoire Naturelle, Série a, Zoologie 33(1): 1–48.

    Google Scholar 

  • Hughes, J. M., S. E. Bunn, D. A. Hurwood, S. Choy & R. G. Pearson, 1996. Genetic differentiation among populations of Caridina zebra (Decapoda: Atyidae) in tropical rainforest streams, northern Australia. Freshwater Biology 36: 289–296.

    Article  Google Scholar 

  • Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes & A. Drummond, 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keith, P., 2003. Biology and Ecology of Amphidromous Gobiidae of the Indo-Pacific and the Caribbean Regions. Journal of Fish Biology 63(4): 831–847. https://doi.org/10.1046/j.1095-8649.2003.00197.x.

    Article  Google Scholar 

  • Keith, P. & C. Lord, 2011a. Biology and ecology of amphidromous Gobiidae in the Indo-pacific and the Carrbean regions. Journal of Fish Biology 63: 831–847.

    Article  Google Scholar 

  • Keith, P. & C. Lord, 2011b. Tropical freshwater gobiies: amphidromy as a life cycle. In Patzner, R. A., J. L. Van Tessel, M. Kovacic & B. G. Kapoor (eds), The Biology of gobies Science Publishers, St Helier: 119–128.

    Google Scholar 

  • Keith, P., E. Vigneux & P. Bosc, 1999. Atlas des poissons et des crustacés d’eau douce de la Réunion, Muséum national d’Histoire naturelle, Paris:

    Google Scholar 

  • Keith, P., G. Marquet, P. Valade, P. Bosc & E. Vigneux, 2006. Atlas des poissons et des crustacés d’eau douces des Comores, Mascareignes et Seychelles, Muséum national d’Histoire naturelle, Paris:

    Google Scholar 

  • Kritzer, J. P. & P. F. Sale, 2004. Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish and Fisheries 5(2): 131–140. https://doi.org/10.1111/J.1467-2979.2004.00131.X.

    Article  Google Scholar 

  • Kumar, S., G. Stecher, M. Li, C. Knyaz & K. Tamura, 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagarde, R., N. Teichert, P. Valade & D. Ponton, 2020. Structure of small tropical island freshwater fish and crustacean communities: a niche-or dispersal-based process? Biotropica. https://doi.org/10.1111/btp.12865.

    Article  Google Scholar 

  • Liao, T. Y., P. L. Lu, Y. H. Yu, W. C. Huang, J. C. Shiao, HDu. Lin, W. C. Jhuang, T. K. Chou & F. Li, 2021. Amphidromous but endemic: Population connectivity of Rhinogobius gigas (Teleostei: Gobioidei). PLOS ONE 16(2): e0246406. https://doi.org/10.1371/JOURNAL.PONE.0246406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord, C., C. Brun, M. Hautecoeur & P. Keith, 2010. Comparaison of the duration of the marine larval phase estimated by otolith microstructures analysis of three amphidromous Sicyopterus species (Gobiidae: Sicydiinae) from Vanuatu and New Caledonia insights an endemism. Ecology of Freshwater Fish 19: 26–38.

    Article  Google Scholar 

  • Lord, C., J. Lorion, A. Dettai, S. Watanabe, K. Tsukamoto, C. Cruaud & P. Keith, 2012. From endemism to widespread distribution: Phylogeography of three amphidromous Sicyopterus species (Teleostei: Gobioidei: Sicydiinae). Marine Ecology Progress Series 455: 269–285. https://doi.org/10.3354/meps09617.

    Article  Google Scholar 

  • Lord, C., K. Maeda, P. Keith & S. Watanabe, 2015. Population structure of the asian amphidromous Sicydiinae goby, Stiphodon percnopterygionus, inferred from mitochondrial COI sequences, with comments on larval dispersal in the northwest pacific ocean. Vie Et Milieu 65(2): 63–71.

    Google Scholar 

  • Mantel, N. (1967). The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Research, 27(2 Part 1).

  • Maruyama, A., Y. Yamada, M. Yuma & B. Rusuwa, 2001. Stable nitrogen and carbon isotope ratios as migration tracers of a landlocked goby, Rhinogobius sp. (the orange form), in the Lake Biwa water system. Ecological Research 16: 697–703.

    Article  Google Scholar 

  • McDowall, R. M., 2007. On Amphidromy, a distinct form of diadromy in aquatic organisms. Fish and Fisheries 8(1): 1–13. https://doi.org/10.1111/j.1467-2979.2007.00232.x.

    Article  Google Scholar 

  • Mennesson, M., H. Tabouret, C. Pécheyran, E. Feunteun & P. Keith, 2015. Amphidromous life cycle of Eleotris fusca (Gobioidei: Eleotridae), a widespread species from the Indo-Pacific studied by otolith analyses. Cybium 39(4): 249–260. https://doi.org/10.26028/cybium/2015-394-002.

    Article  Google Scholar 

  • Mennesson, M., C. Bonillo, E. Feunteun & P. Keith, 2018. Phylogeography of Eleotris fusca (Teleostei: Gobioidei: Eleotridae) in the Indo-Pacific area reveals a cryptic species in the Indian Ocean. Conservation Genetics 19: 1025–1038.

    Article  Google Scholar 

  • Miller, Mark A., Wayne Pfeiffer, and Terri Schwartz. (2010). “Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees.” In Proceedings of the Gateway Computing Environments Workshop (GCE), 1–8. New Orleans.

  • Murphy, C. A. & J. H. Cowan, 2007. Production, marine larval retention or dispersal, and recruitment of Amphidromous Hawaiian Gobioids: issues and implications. Bishop Museum Bulletin in Cultural and Environmental Studies 3: 63–74.

    Google Scholar 

  • Myers, G. S., 1949. Usage of Anadromous, Catadromous and allied terms for migratory fishes. Copeia 1949(2): 80–97. https://doi.org/10.2307/1438482.

    Article  Google Scholar 

  • Myers, M. J., C. P. Meyer & V. H. Resh, 2000. Neritid and thiarid gastropods from French Polynesian streams: how reproduction (sexual, parthenogenetic) and dispersal (active, passive) affect population structure. Freshwater Biology 44(3): 535–545. https://doi.org/10.1046/J.1365-2427.2000.00599.X.

    Article  Google Scholar 

  • Myers, G. S. (1938). Fresh water fishes and west Indian zoogeography (Vol. 3465). US Government Printing Office.

  • Nakahara, Y., A. Hagiwara, Y. Miya & K. Hirayama, 2005. Larval Rearing of three Amphidromous shrimp species (Atyidae) under different feeding and salinity conditions. Aquaculture Science 53(3): 305–310.

    Google Scholar 

  • Nei, M., 1987. Molecular evolutionary. Genetics. https://doi.org/10.7312/nei-92038.

    Article  Google Scholar 

  • Oliveira, C. M. C. A., M. Terossi, F. L. Mantelatto, C. M. C. A. Oliveira, M. Terossi & F. L. Mantelatto, 2019. Phylogeographic structuring of the amphidromous shrimp Atya scabra (Crustacea, Decapoda, Atyidae) unveiled by range-wide mitochondrial DNA sampling. Marine and Freshwater Research 70(8): 1078–1093. https://doi.org/10.1071/MF18272.

    Article  CAS  Google Scholar 

  • Page, T. J. & J. M. Hughes, 2007. Radically different scales of phylogeographic structuring within cryptic species of freshwater shrimp (Atyidae: Caridina). Limnology and Oceanography 52(3): 1055–1066. https://doi.org/10.4319/lo.2007.52.3.1055.

    Article  Google Scholar 

  • Richard, J. & P. F. Clark, 2010. Caridina H Milne Edwards, 1837 (Crustacea: Decapoda: Caridea: Atyoidea: Atyidae) – Freshwater shrimps from eastern and Southern Africa. Zootaxa 337(2372): 305–337.

    Article  Google Scholar 

  • Roberts, C. M., 1997. Connectivity and management of Carribean coral reefs. Science 278(5342): 1454–1457. https://doi.org/10.1126/science.278.5342.1454.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180.

    Article  CAS  PubMed  Google Scholar 

  • Rossi, N. & F. L. Mantelatto, 2013. Molecular analysis of the freshwater prawn Macrobrachium olfersii (Decapoda, Palaemonidae) supports the existence of a single species throughout its distribution. PLOS ONE 8(1): e54698. https://doi.org/10.1371/JOURNAL.PONE.0054698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset, F., 1997. Genetic differentiation and estimation of gene flow from f-statistics under isolation by distance. Genetics 145: 1219–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset, F. & M. Raymond, 1997. Statistical analyses of population genetic data: new tools, old concepts. Trends in Ecology & Evolution 12(8): 313–317. https://doi.org/10.1016/S0169-5347(97)01104-X.

    Article  CAS  Google Scholar 

  • Rozas, J., A. Ferrer-Mata, J. C. Sánchez-DelBarrio, S. Guirao-Rico, P. Librado, S. E. Ramos-Onsins & A. Sánchez-Gracia, 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34(12): 3299–3302. https://doi.org/10.1093/molbev/msx248.

    Article  CAS  PubMed  Google Scholar 

  • Shen, K. N. & W. N. Tzeng, 2002a. Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecology Progress Series 228: 205–211.

    Article  Google Scholar 

  • Shen, K. N. & W. N. Tzeng, 2002b. Reproductive strategy and recruitment dynamics of amphidromous goby Sicyopterus japonicus as revealed by otolith microstructures. Journal Fish Biology 73: 2497–2512.

    Article  Google Scholar 

  • Stamatakis, A., 2014. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taillebois, L., M. Castelin, J. R. Ovenden, C. Bonillo & P. Keith, 2013. Contrasting genetic structure among populations of two amphidromous fish species (Sicydiinae) in the Central West Pacific. PLOS ONE 8(10): e75465. https://doi.org/10.1371/JOURNAL.PONE.0075465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105(2): 437–460. https://doi.org/10.1093/genetics/105.2.437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang, L. M., K. H. Tsoi, S. K. F. Chan, T. K. T. Chan & K. H. Chu, 2016. Strong genetic differentiation among populations of the freshwater shrimp Caridina cantonensis in Hong Kong: implications for conservation of freshwater fauna in urban areas. Marine and Freshwater Research 68(1): 187–194. https://doi.org/10.1071/MF15377.

    Article  CAS  Google Scholar 

  • Visram, S., M. C. Yang, R. M. Pillay, S. Said, O. Henriksson, M. Grahn & C. A. Chen, 2010. Genetic connectivity and historical demography of the blue barred parrotfish (Scarus ghobban) in the western Indian Ocean. Marine Biology 157(7): 1475–1487. https://doi.org/10.1007/s00227-010-1422-8.

    Article  Google Scholar 

  • Watterson, G. A., 1975. On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7: 256–276.

    Article  CAS  PubMed  Google Scholar 

  • Wood, L. E., S. de Grave & S. R. Daniels, 2019. A comparative evolutionary study reveals radically different scales of genetic structuring within two atyid shrimp species (Crustacea: Decapoda: Atyidae). Zoological Journal of the Linnean Society 186(1): 200–212. https://doi.org/10.1093/zoolinnean/zly044.

    Article  Google Scholar 

  • Wright, S., 1949. The genetical structure of populations. Annals of Eugenics 15(1): 323–354. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x.

    Article  Google Scholar 

  • Zhang, W., S. Jiang, K. R. Salumy, Z. Xuan, Y. Xiong, S. Jin, Y. Gong, Y. Wu, H. Qiao & H. Fu, 2022. Comparison of genetic diversity and population structure of eight Macrobrachium nipponense populations in China based on D-loop sequences. Aquaculture Reports 23: 101086. https://doi.org/10.1016/J.AQREP.2022.101086.

    Article  Google Scholar 

Download references

Acknowledgements

Comoros archipelago: thanks to Ibrahim Yahaya, Abdallah Ahmed Soilihi and Halidi Ahmed Ben Ali. We are also grateful to Conservation International (CI) and particularly to F. Hawkins and CI Madagascar. Mayotte: Thanks to DAF (Direction de l'agriculture et de la forêt) and ARDA (Association Réunionaise de Développement de l’Aquaculture). Seychelles: We thank H. Grondin of ARDA (Association Réunionaise de Développement de l’Aquaculture) in Reunion Island for giving us specimens from this archipelago. Magagascar: We thank the DIAMSOI team (The IH-SM from Tuléar with Dr Man-Wai Rabenevanana and the MNHN from Paris with E. Feunteun, P. Keith and T. Robinet) and the ARDA team (P. Bosc, H. Grondin and P. Valade). We are grateful to Joe Aride from Madagascar National Parcs (MNP-ANGAP) and to the manager of Masoala National Parc at Maroantsetra. Lastly, we want to thank all the Responsible Chiefs of the areas concerned for their kind permission, and the villages and communities who have always heartily received us and helped us in our prospecting of rivers. This research was financed by the Institut Français de la Biodiversité (IFB) for the DIAMSOI program (2007–2010). South Africa: We are grateful to Patrick Kubheka and Helen James for facilitating collecting permits for us with provincial conservation urgencies in KwaZulu-Natal and Eastern Cape (permit no. CRO69/17CR), respectively. We thank Nick and Tim McClurg, Patrick Kubheka, Lazola Maliwa and Pascal Tiberghien for their help in the field and Albert Chakona (SAIAB) for lending us his electric fishing gear. Thanks to D. Christopher Rogers for providing us specimens from Mauritius. Thanks to the Service de Systématique Moléculaire of the MNHN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin De Mazancourt.

Ethics declarations

Competing interests

The authors declare no financial or non-financial interests that are directly or indirectly related to the present work.

Additional information

Handling editor: Diego Fontaneto

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Mazancourt, V., Abdou, A., Castelin, M. et al. Molecular ecology of the freshwater shrimp Caridina natalensis and comparative analysis with other amphidromous species (Decapoda, Teleostei, and Gastropoda). Hydrobiologia 850, 3997–4014 (2023). https://doi.org/10.1007/s10750-023-05283-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05283-7

Keywords

Navigation