Skip to main content

Advertisement

Log in

Pervasive native plant has the potential to resist the invasion of exotic species: a trait-based comparison

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Biotic resistance of pervasive native species to invasion may be an effective managing tool for exotic plants. The present study subjected the invasive aquatic plant in China, Alternanthera philoxeroides (Mart.) Griseb., the exotic species with high dispersal along the Yangtze River Basin of sub-tropical China, Myriophyllum aquaticum (Vell.) Verdc., and the pervasive native species in China, Ludwigia peploides subsp. stipulacea (Ohwi) Raven, to different treatment combinations of sediment type and flooding condition in a mesocosm experiment. Morphological traits, biomass allocation, and physiological traits were employed to evaluate the plant performance of the three species. We found that L. peploides performed faster stolon elongation and roots recruitment than the invasive species. A. philoxeroides had a higher leaf nitrogen concentration, lower values in leaf C/N ratio and leaf construction cost, and higher plasticity in leaf nitrogen concentration, however, a weaker space exploitation compared to L. peploides. Moreover, L. peploides might had higher photosynthetic efficiency than M. aquaticum due to the higher chlorophyll concentration and leaf nitrogen concentration. We speculate that L. peploides has the potential to resist the invasion and to be used as biocontrol species for the management of exotic invasive species since this pervasive native species has greater space exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aryal, P. C., C. Aryal, K. Bhusal, D. Chapagain, M. K. Dhamala, S. R. Maharjan & P. K. Chhetri, 2022. Forest structure and anthropogenic disturbances regulate plant invasion in urban forests. Urban Ecosystems 25: 367–377.

    Article  Google Scholar 

  • Ashbacher, A. C. & E. E. Cleland, 2015. Native and exotic plant species show differential growth but similar functional trait responses to experimental rainfall. Ecosphere 6: 245.

    Article  Google Scholar 

  • Bachmann, D., S. Both, H. Bruelheide, B. Y. Ding, M. Gao, W. Härdtle, M. Scherer-Lorenzen & A. Erfmeier, 2012. Functional trait similarity of native and invasive herb species in subtropical China–environment-specific differences are the key. Environmental and Experimental Botany 83: 82–92.

    Article  Google Scholar 

  • Bornette, G. & S. Puijalon, 2009. Macrophytes: ecology of aquatic plants, Encyclopedia of Life Sciences (ELS). Wiley, Chichester.

    Google Scholar 

  • Campbell, D. & P. Keddy, 2022. The roles of competition and facilitation in producing zonation along an experimental flooding gradient: a tale of two tails with ten freshwater marsh plants. Wetlands 42: 5.

    Article  Google Scholar 

  • Conti, L., S. Block, M. Parepa, T. Münkemüller, W. Thuiller, A. T. R. Acosta, M. van Kleunen, S. Dullinger, F. Essl, I. Dullinger, D. Moser, G. Klonner, O. Bossdorf & M. Carboni, 2018. Functional trait differences and trait plasticity mediate biotic resistance to potential plant invaders. Journal of Ecology 106: 1607–1620.

    Article  Google Scholar 

  • Davidson, A. M., M. Jennions & A. B. Nicotra, 2011. Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecology Letters 14: 419–431.

    Article  PubMed  Google Scholar 

  • Dlugosch, K. M., F. A. Cang, B. S. Barker, K. Andonian, S. M. Swope & L. H. Rieseberg, 2015. Evolution of invasiveness through increased resource use in a vacant niche. Nature Plants 1: 15066.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, B. C., P. Alpert, Q. Zhang & F. H. Yu, 2015. Clonal integration in homogeneous environments increases performance of Alternanthera philoxeroides. Oecologia 179: 393–403.

    Article  PubMed  Google Scholar 

  • Douhovnikoff, V. & E. L. G. Hazelton, 2014. Clonal growth: Invasion or stability? A comparative study of clonal architecture and diversity in native and introduced lineages of Phragmites australis (Poaceae). American Journal of Botany 101: 1577–1584.

    Article  PubMed  Google Scholar 

  • Fan, S. F., H. H. Yu, C. H. Liu, D. Yu, Y. Q. Han & L. G. Wang, 2015. The effects of complete submergence on the morphological and biomass allocation response of the invasive plant Alternanthera philoxeroides. Hydrobiologia 746: 159–169.

    Article  CAS  Google Scholar 

  • Heberling, J. M. & J. D. Fridley, 2013. Resource-use strategies of native and invasive plants in Eastern North American forests. New Phytologist 200: 523–533.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X. L., L. G. Wang, X. Guan, Y. Y. Gao, C. H. Liu & D. Yu, 2018. The root structures of 21 aquatic plants in a macrophyte-dominated lake in China. Journal of Plant Ecology 11: 39–46.

    Article  Google Scholar 

  • Hussner, A. & P. D. Champion, 2012. Chapter 9: Myriophyllum aquaticum (Vell.) Verdcourt (parrot feather). In Francis, R. A. (ed), A Handbook of Global Freshwater Invasive Species Earthscan, London & New York: 103–111.

    Google Scholar 

  • Hussner, A., C. Meyer & J. Busch, 2009. The influence of water level on growth and root system development of Myriophyllum aquaticum. Weed Research 49: 73–80.

    Article  CAS  Google Scholar 

  • Larson, D. L., 2003. Native weeds and exotic plants: relationships to disturbance in mixed-grass prairie. Plant Ecology 169: 317–333.

    Article  Google Scholar 

  • Lear, L., E. Hesse, K. Shea & A. Buckling, 2020. Disentangling the mechanisms underpinning disturbance-mediated invasion. Proceedings of the Royal Society B – Biological Sciences 287: 20192415.

    Article  PubMed Central  Google Scholar 

  • Leishman, M. R., V. P. Thomson & J. Cooke, 2010. Native and exotic invasive plants have fundamentally similar carbon capture strategies. Journal of Ecology 98: 28–42.

    Article  CAS  Google Scholar 

  • Li, H. L., L. Ning, P. Alpert, J. M. Li & F. H. Yu, 2014. Responses to simulated nitrogen deposition in invasive and native or non-invasive clonal plants in China. Plant Ecology 215: 1483–1492.

    Article  Google Scholar 

  • Liang, J. F., W. Y. Yuan, J. Q. Gao, S. R. Roiloa, M. H. Song, X. Y. Zhang & F. H. Yu, 2020. Soil resource heterogeneity competitively favors an invasive clonal plant over a native one. Oecologia 193: 155–165.

    Article  PubMed  Google Scholar 

  • Ma, J., 2013. The checklist of the Chinese invasive plants. Chinese Biodiversity Science 21: 635–635.

    Google Scholar 

  • Montesinos, D., 2022. Fast invasives fastly become faster: invasive plants align largely with the fast side of the plant economics spectrum. Journal of Ecology 110: 1010–1014.

    Article  Google Scholar 

  • Murphy, J. E., J. H. Burns, M. Fougère-Danezan & R. E. Drenovsky, 2016. Functional trait values, not trait plasticity, drive the invasiveness of Rosa sp. in response to light availability. American Journal of Botany 103: 2058–2069.

    Article  PubMed  Google Scholar 

  • Muthukrishnan, R. & D. J. Larkin, 2020. Invasive species and biotic homogenization in temperate aquatic plant communities. Global Ecology and Biogeography 29: 656–667.

    Article  Google Scholar 

  • Nürnberger, B., 2013. Ecological genetics. In Levin, S. A. (ed), Encyclopedia of Biodiversity 2nd ed. Academic Press, USA: 714–731.

    Chapter  Google Scholar 

  • Petruzzella, A., J. Manschot, C. H. A. van Leeuwen, B. M. C. Grutters & E. S. Bakker, 2018. Mechanisms of invasion resistance of aquatic plant communities. Frontiers in Plant Science 9: 134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petsch, D. K., A. P. S. Bertoncin, J. C. G. Ortega & S. M. Thomaz, 2022. Non-native species drive biotic homogenization, but it depends on the realm, beta diversity facet and study design: a meta-analytic systematic review. Oikos 2022: e08768.

    Article  Google Scholar 

  • Porté, A. J., L. J. Lamarque, C. J. Lortie, R. Michalet & S. Delzon, 2011. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity. BMC Ecology 11: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Price, J. N. & M. Pärtel, 2013. Can limiting similarity increase invasion resistance? A meta-analysis of experimental studies. Oikos 122: 649–656.

    Article  Google Scholar 

  • Richards, C. L., O. Bossdorf, N. Z. Muth, J. Gurevitch & M. Pigliucci, 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9: 981–993.

    Article  PubMed  Google Scholar 

  • Sardans, J., M. Bartrons, O. Margalef, A. Gargallo-Garriga, I. A. Janssens, P. Ciais, M. Obersteiner, B. D. Sigurdsson, H. Y. Chen & J. Peñuelas, 2017. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Change Biology 23: 1282–1291.

    Article  PubMed  Google Scholar 

  • Schultheis, E. H. & D. J. MacGuigan, 2018. Competitive ability, not tolerance, may explain success of invasive plants over natives. Biological Invasions 20: 2793–2806.

    Article  Google Scholar 

  • Shafiullah, M. D. & C. R. Lacroix, 2013. Comparative leaf development of aerial and aquatic growth forms of Myriophyllum aquaticum. Botany 91: 421–430.

    Article  Google Scholar 

  • Tortorelli, C. M., B. K. Kerns & M. A. Krawchuk, 2022. Community invasion resistance is influenced by interactions between plant traits and site productivity. Ecology 103: e3697.

    Article  PubMed  Google Scholar 

  • Uddin, N. & R. W. Robinson, 2018. Can nutrient enrichment influence the invasion of Phragmites australis? Science of the Total Environment 613–614: 1449–1459.

    Article  PubMed  Google Scholar 

  • Wang, B. R., W. G. Li & J. B. Wang, 2005. Genetic diversity of Alternanthera philoxeroides in China. Aquatic Botany 8: 277–283.

    Article  Google Scholar 

  • Wang, T., J. T. Hu, Y. Y. Gao, D. Yu & C. H. Liu, 2017a. Disturbance, trait similarities and trait advantages facilitate the invasion success of Alternanthera philoxeroides (Mart.) Griseb. Clean-Soil Air Water 45: 1600378.

    Article  Google Scholar 

  • Wang, T., J. T. Hu, C. H. Liu & D. Yu, 2017b. Soil type can determine invasion success of Eichhornia crassipes. Hydrobiologia 788: 281–291.

    Article  Google Scholar 

  • Wang, T., J. T. Hu, R. Q. Wang, C. H. Liu & D. Yu, 2018. Tolerance and resistance facilitate the invasion success of Alternanthera philoxeroides in disturbed habitats: a reconsideration of the disturbance hypothesis in the light of phenotypic variation. Environmental and Experimental Botany 153: 135–142.

    Article  CAS  Google Scholar 

  • Wang, T., J. T. Hu, R. Q. Wang, C. H. Liu & D. Yu, 2019. Trait convergence and niche differentiation of two exotic invasive free-floating plant species in China under shifted water nutrient stoichiometric regimes. Environmental Science and Pollution Research 26: 35779–35786.

    Article  PubMed  Google Scholar 

  • Wang, T., H. R. Dou, C. H. Liu & D. Yu, 2021a. Decoupling between plant growth and functional traits of the free-floating fern Salvinia natans under shifted water nutrient stoichiometric regimes. Flora 281: 151876.

    Article  Google Scholar 

  • Wang, T., L. Y. Yang, J. T. Hu, C. H. Liu & D. Yu, 2021b. Clonal performance of Scirpus yagara in multiple levels of substrate heterogeneity and submergence. Journal of Plant Ecology 14: 805–815.

    Article  Google Scholar 

  • Wardle, D. A., 2003. Experimental demonstration that plant diversity reduces invasibility – evidence of a biological mechanism or sampling effect? Oikos 95: 161–170.

    Article  Google Scholar 

  • Wersal, R. M. & J. D. Madsen, 2013. Influences of light intensity variations on growth characteristics of Myriophyllum aquaticum. Journal of Freshwater Ecology 28: 147–164.

    Article  Google Scholar 

  • Xu, X., C. H. Zhou, Q. He, S. Y. Qiu, Y. Zhang, J. Yang, B. Li & M. Nie, 2022. Phenotypic plasticity of light use favors a plant invader in nitrogen-enriched ecosystems. Ecology 103: e3665.

    Article  PubMed  Google Scholar 

  • Yang, L. Y., P. C. Zhu, R. Q. Wang, T. Wang & X. N. Yu, 2020. The effects of changing sedimentation disturbance on the invasiveness of Alternanthera philoxeroides are trait dependent. Aquatic Invasions 15: 578–592.

    Article  Google Scholar 

  • Yannelli, F. A., C. Koch, J. M. Jeschke & J. Kollmann, 2017. Limiting similarity and Darwin’s naturalization hypothesis: understanding the drivers of biotic resistance against invasive plant species. Oecologia 183: 775–784.

    Article  CAS  PubMed  Google Scholar 

  • You, W. H., C. M. Han, L. X. Fang & D. L. Du, 2016. Propagule pressure, habitat conditions and clonal integration influence the establishment and growth of an invasive clonal plant, Alternanthera philoxeroides. Frontiers in Plant Science 7: 568.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. L., H. H. Yu, T. Lv, L. Yang, C. H. Liu, S. F. Fan & D. Yu, 2021a. Effects of different scenarios of temperature rise and biological control agents on interactions between two noxious invasive plants. Diversity and Distributions 27: 2300–2314.

    Article  Google Scholar 

  • Zhang, X. L., H. W. Yu, H. H. Yu, C. H. Liu, S. F. Fan & D. Yu, 2021b. Highly competitive native aquatic species could suppress the growth of invasive aquatic species with similar traits. Biological Invasions 23: 267–280.

    Article  Google Scholar 

  • Zhou, Y. & A. C. Staver, 2019. Enhanced activity of soil nutrient-releasing enzymes after plant invasion: a meta-analysis. Ecology 100: e02830.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate the assistance from Jiangtao Hu throughout the experimental process.

Funding

This work was financially supported by the National Natural Science Foundation of China (31800299, 32271588), the general financial grant from the China Postdoctoral Science Foundation (2017M622184), the Qingdao Agricultural University Doctoral Start-Up Fund (663/1121009, 663/1116023) and the National Undergraduate Training Program for Innovation and Entrepreneurship of Qingdao Agricultural University (844, 849).

Author information

Authors and Affiliations

Authors

Contributions

TW Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Visualization, Writing—original draft, Writing—review & editing. YZ Funding acquisition, Investigation. ZZ and XC Investigation. XH and HL Funding acquisition. MZ and CL Writing—review & editing. DY Resources. XG Formal analysis, Writing—review & editing, Funding acquisition. ML Investigation, Writing—review & editing.

Corresponding authors

Correspondence to Tong Wang or Haifang Li.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Julie Coetzee

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhu, Y., Zhang, Z. et al. Pervasive native plant has the potential to resist the invasion of exotic species: a trait-based comparison. Hydrobiologia 850, 2015–2033 (2023). https://doi.org/10.1007/s10750-023-05212-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05212-8

Keywords

Navigation