Skip to main content
Log in

Riverine drift communities during larval fish dispersal over multiple recruitment years

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Predation during the downstream dispersal of larval stages represents a major recruitment bottleneck for fish populations. The co-occurrence of other organisms in river drift may reduce predation, but our knowledge of the factors influencing the composition and abundance of drift communities during post-hatch dispersal of larval fish remain limited. A multi-year (2011–2018) study was conducted to investigate abiotic factors influencing drift communities during larval lake sturgeon (Acipenser fulvescens) dispersal in the Upper Black River (Cheboygan, MI, USA). Cumulative water temperature was a strong predictor of drift for larval lake sturgeon, suckers (Catostomidae) and macroinvertebrates, with reduced macroinvertebrate drift during lunar phases with higher lunar illumination. Nights with a new moon had on average, three times the drifting macroinvertebrate biomass as nights during a full moon, with Heptageniidae and Isonychiidae displaying higher abundances during lower light conditions. Favorable conditions for other taxa to reduce larval lake sturgeon predation through predator swamping were common, though variability in timing (overlap between drifting taxa), biomass, and abundances likely alters the strength of such effects among years. A better understanding of the conditions influencing drifting communities during larval fish dispersal may assist in predicting larval mortality and year-class strength for managed fish populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that supports the conclusions in this paper, along with all code use in analysis is available at: https://github.com/BenbowLab/UBRDrift2020.

References

  • Allan, J. D., 1978. Trout predation and the size composition of stream drift. Limnology and Oceanography 23: 1231–1237.

    Article  Google Scholar 

  • Allan, J. D., 1987. Macroinvertebrate drift in a rocky mountain stream. Hydrobiologia 144: 261–268.

    Article  Google Scholar 

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Jounal of Molecular Biology 215: 403–410.

    Article  CAS  Google Scholar 

  • Angilletta, M. J., Jr., T. D. Steury & M. W. Sears, 2004. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integrative and Comparative Biology 44: 498–509.

    Article  PubMed  Google Scholar 

  • Auer, N. & E. Baker, 2002. Duration and drift of larval lake sturgeon in the Sturgeon River, Michigan. Journal of Applied Ichthyology 18: 557–564.

    Article  Google Scholar 

  • Auer, N. A. & E. A. Baker, 2020. New insights into larval lake sturgeon daytime drift dynamics. Journal of Great Lakes Research 46: 339–346.

    Article  Google Scholar 

  • Bates, D., M. Mächler, B. Bolker & S. Walker, 2014. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv: 14065823.

  • Baxter, C. V., T. A. Kennedy, S. W. Miller, J. D. Muehlbauer & L. A. Smock, 2017. Macroinvertebrate drift, adult insect emergence and oviposition. Methods in Stream Ecology 1: 435–456.

    Article  Google Scholar 

  • Beauchamp, D. A., C. M. Baldwin, J. L. Vogel & C. P. Gubala, 1999. Estimating diel, depth-specific foraging opportunities with a visual encounter rate model for pelagic piscivores. Canadian Journal of Fisheries and Aquatic Sciences 56: 128–139.

    Article  Google Scholar 

  • Benbow, M. E., J. P. Receveur & G. A. Lamberti, 2020. Death and decomposition in aquatic ecosystems. Frontiers in Ecology and Evolution 8: 17.

    Article  Google Scholar 

  • Benbow, M. E., J. P. Receveur & S. Nowak, 2019. An overview of the aquatic insect ecological tables. In Merritt, R.W., K.W. Cummins & M.B. Berg (eds). An Introduction to the Aquatic Insects of North America. Kendall Hunt, Dubuque, Iowa: 165–174.

  • Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57: 289–300.

    Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Bridcut, E., 2000. A study of terrestrial and aerial macroinvertebrates on river banks and their contribution to drifting fauna and salmonid diets in a Scottish catchment. Hydrobiologia 427: 83–100.

    Article  Google Scholar 

  • Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift—a review. Hydrobiologia 166: 77–93.

    Article  Google Scholar 

  • Brooks, M. E., K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, H. J. Skaug, M. Machler & B. M. Bolker, 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9: 378–400.

    Article  Google Scholar 

  • Bruch, R. M. & F. Binkowski, 2002. Spawning behavior of lake sturgeon (Acipenser fulvescens). Journal of Applied Ichthyology 18: 570–579.

    Article  Google Scholar 

  • Caroffino, D. C., T. M. Sutton, R. F. Elliott & M. C. Donofrio, 2010. Predation on early life stages of lake sturgeon in the Peshtigo River, Wisconsin. Transactions of the American Fisheries Society 139: 1846–1856.

    Article  Google Scholar 

  • Carpenter, J. & G. A. Mueller, 2008. Small nonnative fishes as predators of larval razorback suckers. The Southwestern Naturalist 53: 236–242.

    Article  Google Scholar 

  • Copp, G., S. Spathari & M. Turmel, 2005. Consistency of diel behaviour and interactions of stream fishes and invertebrates during summer. River Research and Applications 21: 75–90.

    Article  Google Scholar 

  • Crossman, J. A., K. T. Scribner, P. S. Forsythe & E. A. Baker, 2018. Lethal and non-lethal effects of predation by native fish and an invasive crayfish on hatchery-reared age-0 lake sturgeon. Journal of Applied Ichthyology. 34: 322–330.

    Article  CAS  Google Scholar 

  • Crossman, J. A., K. T. Scribner, D. T. Yen, C. A. Davis, P. S. Forsythe & E. A. Baker, 2011. Gamete and larval collection methods and hatchery rearing environments affect levels of genetic diversity in early life stages of lake sturgeon (Acipenser fulvescens). Aquaculture 310: 312–324.

    Article  Google Scholar 

  • Culp, J. M. & G. J. Scrimgeour, 1993. Size-dependent diel foraging periodicity of a mayfly grazer in streams with and without fish. Oikos 68: 242–250.

    Article  Google Scholar 

  • Delm, M. M., 1990. Vigilance for predators: detection and dilution effects. Behavioral Ecology and Sociobiology 26: 337–342.

    Article  Google Scholar 

  • Diehl, S., 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214.

    Article  Google Scholar 

  • Doretto, A., E. Piano, E. Falasco, S. Fenoglio, M. Bruno & F. Bona, 2018. Investigating the role of refuges and drift on the resilience of macroinvertebrate communities to drying conditions: an experiment in artificial streams. River Research and Applications 34: 777–785.

    Article  Google Scholar 

  • Doretto, A., J. P. Receveur, E. A. Baker, M. E. Benbow & K. T. Scribner, 2022. Nested analysis of macroinvertebrate diversity along a river continuum: Identifying relevant spatial scales for stream communities. River Research and Applications 38: 334–344.

    Article  Google Scholar 

  • Duong, T. Y., K. T. Scribner, J. A. Crossman, P. S. Forsythe & E. A. Baker, 2011. Environmental and maternal effects on embryonic and larval developmental time until dispersal of lake sturgeon (Acipenser fulvescens). Canadian Journal of Fisheries and Aquatic Science 68: 643–654.

    Article  Google Scholar 

  • Fasiolo, M., R. Nedellec, Y. Goude & S. N. Wood, 2019. Scalable visualisation methods for modern generalized additive models. Journal of Computational and Graphical Statistics 29: 78–86.

    Article  Google Scholar 

  • Fenoglio, S., T. Bo, G. Gallina & M. Cucco, 2004. Vertical distrubution in the water column of drifting stream macroinvertebrates. Journal of Freshwater Ecology 19: 485–492.

    Article  Google Scholar 

  • Fenoglio, S., F. Boano, T. Bo, R. Revelli & L. Ridolfi, 2013. The impacts of increasing current velocity on the drift of Simulium monticola (Diptera: Simuliidae): a laboratory approach. Italian Journal of Zoology 80: 443–448.

    Article  Google Scholar 

  • Flecker, A. S., 1992. Fish predation and the evolution of invertebrate drift periodicity: evidence from neotropical streams. Ecology 73: 438–448.

    Article  Google Scholar 

  • Forrester, G. E., 1994. Influences of predatory fish on the drift dispersal and local density of stream insects. Ecology 75: 1208–1218.

    Article  Google Scholar 

  • Forsythe, P., K. Scribner, J. Crossman, A. Ragavendran & E. Baker, 2013. Experimental assessment of the magnitude and sources of lake sturgeon egg mortality. Transactions of the American Fisheries Society 142: 1005–1011.

    Article  Google Scholar 

  • Forsythe, P., K. Scribner, J. Crossman, A. Ragavendran, E. Baker, C. Davis & K. Smith, 2012. Environmental and lunar cues are predictive of the timing of river entry and spawning-site arrival in lake sturgeon Acipenser fulvescens. Journal of Fish Biology 81: 35–53.

    Article  CAS  PubMed  Google Scholar 

  • Forsythe, P. S., J. A. Crossman, N. M. Bello, E. A. Baker & K. T. Scribner, 2011. Individual-based analyses reveal high repeatability in timing and location of reproduction in lake sturgeon (Acipenser fulvescens). Canadian Journal of Fisheries and Aquatic Sciences 69: 60–72.

    Article  Google Scholar 

  • Furey, N. B., S. G. Hinch, A. L. Bass, C. T. Middleton, V. Minke-Martin & A. G. Lotto, 2016. Predator swamping reduces predation risk during nocturnal migration of juvenile salmon in a high-mortality landscape. Journal of Animal Ecology 85: 948–959.

    Article  PubMed  Google Scholar 

  • Gadomski, D. M. & M. J. Parsley, 2005. Effects of turbidity, light level, and cover on predation of white sturgeon larvae by prickly sculpins. Transactions of the American Fisheries Society 134: 369–374.

    Article  Google Scholar 

  • Gibbins, C., D. Vericat, R. Batalla & C. Buendia, 2016. Which variables should be used to link invertebrate drift to river hydraulic conditions? Fundamental and Applied Limnology 187: 191–205.

    Article  Google Scholar 

  • Hamilton, W. D., 1971. Geometry for the selfish herd. Journal of Theoretical Biology 31: 295–311.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, E. A. & G. P. Closs, 2007. Temporal consistency in the long-term spatial distribution of macroinvertebrate drift along a stream reach. Hydrobiologia 575: 361–371.

    Article  Google Scholar 

  • Hartig, F., 2017. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R Package Version 01: 5.

    Google Scholar 

  • Hay, C. H., T. G. Franti, D. B. Marx, E. J. Peters & L. W. Hesse, 2008. Macroinvertebrate drift density in relation to abiotic factors in the Missouri River. Hydrobiologia 598: 175–189.

    Article  Google Scholar 

  • Huhta, A., T. Muotka & P. Tikkanen, 2000. Nocturnal drift of mayfly nymphs as a post-contact antipredator mechanism. Freshwater Biology 45: 33–42.

    Article  Google Scholar 

  • Hynes, H., 1970. The ecology of stream insects. Annual Review of Entomology 15: 25–42.

    Article  Google Scholar 

  • Imbert, J. B. & J. A. Perry, 2000. Drift and benthic invertebrate responses to stepwise and abrupt increases in non-scouring flow. Hydrobiologia 436: 191–208.

    Article  Google Scholar 

  • Ims, R. A., 1990. On the adaptive value of reproductive synchrony as a predator-swamping strategy. The American Naturalist 136: 485–498.

    Article  Google Scholar 

  • Ivanova, N. V., T. S. Zemlak, R. H. Hanner & P. D. Hebert, 2007. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7: 544–548.

    Article  CAS  Google Scholar 

  • Kassambara, A., 2017. ggpubr:“ggplot2” based publication ready plots. R Package Version 01: 6.

    Google Scholar 

  • Kempinger, J. J., 1988. Spawning and early life history of lake sturgeon in the Lake Winnebago system, Wisconsin. American Fisheries Society Symposium 5: 110–112.

    Google Scholar 

  • Koetsier, P. & C. F. Bryan, 1992. Diel, size-differential drift patterns of three macroinvertebrate species in the lower Mississippi River, Louisiana (USA). Hydrobiologia 228: 225–230.

    Article  Google Scholar 

  • Koetsier, P. & C. F. Bryan, 1995. Effects of abiotic factors on macroinvertebrate drift in the lower Mississippi river, Louisiana. American Midland Naturalist 134: 63–74.

    Article  Google Scholar 

  • Lechner, A., H. Keckeis & P. Humphries, 2016. Patterns and processes in the drift of early developmental stages of fish in rivers: a review. Reviews in Fish Biology and Fisheries 26: 471–489.

    Article  Google Scholar 

  • Marra, G. & S. N. Wood, 2012. Coverage properties of confidence intervals for generalized additive model components. Scandinavian Journal of Statistics 39: 53–74.

    Article  Google Scholar 

  • McMurdie, P. J. & S. Holmes, 2013. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. Plos One 8: e61217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPhee, J. J., M. E. Platell & M. J. Schreider, 2015. Trophic relay and prey switching–a stomach contents and calorimetric investigation of an ambassid fish and their saltmarsh prey. Estuarine Coastal and Shelf Science 167: 67–74.

    Article  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An introduction to the aquatic insects of North America, 4th ed. Kendall Hunt Publishing Company:

    Google Scholar 

  • Miller, S. W., & Judson, S. 2014. Responses of macroinvertebrate drift, benthic assemblages, and trout foraging to hydropeaking. Canadian Journal of Fisheries and Aquatic Sciences 71: 675–687

    Article  Google Scholar 

  • Murdoch, W. W., 1969. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecological Monographs 39: 335–354.

    Article  Google Scholar 

  • Naman, S. M., J. S. Rosenfeld & J. S. Richardson, 2016. Causes and consequences of invertebrate drift in running waters: from individuals to populations and trophic fluxes. Canadian Journal of Fisheries and Aquatic Science 73: 1292–1305.

    Article  Google Scholar 

  • Neuswanger, J., M. S. Wipfli, A. E. Rosenberger & N. F. Hughes, 2014. Mechanisms of drift-feeding behavior in juvenile Chinook salmon and the role of inedible debris in a clear-water Alaskan stream. Environmental Biology of Fishes 97: 489–503.

    Article  Google Scholar 

  • O’Connor, J., E. Fobert, M. Besson, H. Jacob & D. Lecchini, 2019. Live fast, die young: Behavioural and physiological impacts of light pollution on a marine fish during larval recruitment. Marine Pollution Bulletin 146: 908–914.

    Article  CAS  PubMed  Google Scholar 

  • Peckarsky, B. L., 1982. Aquatic insect predator-prey relations. Bioscience 32: 261–266.

    Article  Google Scholar 

  • Pepin, P., 2009. The impacts of environmental change and ecosystem structure on the early life stages of fish: a perspective on establishing predictive capacity the future of fisheries science in North America. In The future of fisheries science in North America. Springer.

  • Perkin, E. K., F. Hölker, K. Tockner & J. S. Richardson, 2014. Artificial light as a disturbance to light-naïve streams. Freshwater Biology 59: 2235–2244.

    Article  Google Scholar 

  • Peterson, D. L., P. Vecsei & C. A. Jennings, 2007. Ecology and biology of the lake sturgeon: a synthesis of current knowledge of a threatened North American Acipenseridae. Reviews in Fish Biology and Fisheries 17: 59–76.

    Article  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & R. C. Team, 2012. nlme: linear and nonlinear mixed effects models, R package versio, 3(0):

    Google Scholar 

  • Pledger, S., E. Baker & K. Scribner, 2013. Breeding return times and abundance in capture–recapture models. Biometrics 69: 991–1001.

    Article  PubMed  Google Scholar 

  • R Core Team, 2021. R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria:

    Google Scholar 

  • Reiss, K., M. B. Herriot & B. K. Eriksson, 2014. Multiple fish predators: effects of identity, density, and nutrients on lower trophic levels. Marine Ecological Progress Series 497: 1–12.

    Article  Google Scholar 

  • Rosenfeld, J. S., N. Bouwes, C. E. Wall & S. M. Naman, 2014. Successes, failures, and opportunities in the practical application of drift-foraging models. Environmental Biology of Fishes 97: 551–574.

    Article  Google Scholar 

  • Sánchez-Hernández, J., A. G. Finstad, J. V. Arnekleiv, G. Kjærstad & P.-A. Amundsen, 2020. Beyond ecological opportunity: Prey diversity rather than abundance shapes predator niche variation. Freshwater Biology 66: 44–61.

    Article  Google Scholar 

  • Schiemer, F., H. Keckeis & E. Kamler, 2002. The early life history stages of riverine fish: ecophysiological and environmental bottlenecks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 133: 439–449.

    Article  Google Scholar 

  • Schindelin, J., C. T. Rueden, M. C. Hiner & K. W. Eliceiri, 2015. The ImageJ ecosystem: an open platform for biomedical image analysis. Molecular Reproduction and Development 82: 518–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson, G., 2019. gratia: graceful’ggplot’-based graphics and other functions for GAMs fitted using “mgcv,” R package version 0.2-8:

    Google Scholar 

  • Smith, K. & D. King, 2005. Dynamics and extent of larval lake sturgeon Acipenser fulvescens drift in the Upper Black River, Michigan. Journal of Applied Ichthyology 21: 161–168.

    Article  Google Scholar 

  • Tabor, R. A., G. S. Brown & V. T. Luiting, 2004. The effect of light intensity on sockeye salmon fry migratory behavior and predation by cottids in the Cedar River, Washington. North American Journal of Fisheries Management 24: 128–145.

    Article  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, J., B. North, M. Porter, N. Bromage & H. Migaud, 2006. Photoperiod can be used to enhance growth and improve feeding efficiency in farmed rainbow trout, Oncorhynchus mykiss. Aquaculture 256: 216–234.

    Article  Google Scholar 

  • Van Rij, J., M. Wieling, R. H. Baayen & H. Van Rijn, 2017. itsadug: interpreting time series and autocorrelated data using GAMMs, R package version 2:

    Google Scholar 

  • Waraniak, J., S. Valentine & K. Scribner, 2017. Effects of changes in alternative prey densities on predation of drifting lake sturgeon larvae (Acipenser fulvescens). Journal of Freshwater Ecology 32: 619–632.

    Article  Google Scholar 

  • Waraniak, J. M., E. A. Baker & K. T. Scribner, 2018. Molecular diet analysis reveals predator–prey community dynamics and environmental factors affecting predation of larval lake sturgeon Acipenser fulvescens in a natural system. Journal of Fish Biology 93: 616–629.

    Article  CAS  PubMed  Google Scholar 

  • Waraniak, J. M., T. L. Marsh & K. T. Scribner, 2019. 18S rRNA metabarcoding diet analysis of a predatory fish community across seasonal changes in prey availability. Ecology and Evolution 9: 1410–1430.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waters, T. F., 1961. Standing crop and drift of stream bottom organisms. Ecology 42: 532–537.

    Article  Google Scholar 

  • Waters, T. F., 1962. Diurnal periodicity in the drift of stream invertebrates. Ecology 43: 316–320.

    Article  Google Scholar 

  • Waters, T. F., 1966. Production rate, population density, and drift of a stream invertebrate. Ecology 47: 595–604.

    Article  Google Scholar 

  • Waters, T. F., 1972. The drift of stream insects. Annual Review of Entomology 17: 253–272.

    Article  Google Scholar 

  • Wickham, H., W. Chang & M. H. Wickham, 2016. Package ‘ggplot2,’ Create Elegant Data Visualisations Using the Grammar of Graphics Version 2:

    Google Scholar 

  • Wiley, M. & S. L. Kohler, 1984. Behavioral adaptations of aquatic insects: the ecology of aquatic insects, Praeger, New York:

    Google Scholar 

  • Wood, S. N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal Royal Statistical Society Series B (Stat Method) 73: 3–36.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Black River lake sturgeon field crews (2011–2018) who assisted with sample collection and taxonomic identification, without which this study would not have been possible. Members of the Scribner lab and three anonymous reviewers provided valuable comments which improved the paper.

Funding

Funding was provided by the Michigan Department of Natural Resources, The Great Lakes Fishery Trust, the U.S. Fish and Wildlife Service Coastal Program, and Michigan State University Ag Bio Research.

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived, designed, and supervised by KTS, EAB, JB, and MEB. KS and EB wrote the grants that funded this project. Data collection, data aggregation, and initial analysis were performed by DL and RW. Formal data analysis and first draft of the manuscript were completed by JPR and AD.

Corresponding author

Correspondence to Joseph P. Receveur.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Handling editor: Antti P. Eloranta

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2351 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Receveur, J.P., Doretto, A., Baker, E.A. et al. Riverine drift communities during larval fish dispersal over multiple recruitment years. Hydrobiologia 849, 4357–4375 (2022). https://doi.org/10.1007/s10750-022-04995-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04995-6

Keywords

Navigation