Skip to main content
Log in

Grazing impacts of rotifer zooplankton on a cyanobacteria bloom in a shallow temperate lake (Vancouver Lake, WA, USA)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Grazing by microzooplankton has been shown to significantly impact freshwater cyanobacteria blooms; however, the contribution of rotifers to the overall effect of microzooplankton grazing is not well understood. We conducted monthly microzooplankton community grazing (dilution) experiments June–October 2019, concurrent with incubations of field-collected rotifers feeding upon the natural assemblage of microplankton prey < 75 µm in Vancouver Lake (Washington State, USA), a lake annually affected by cyanobacteria blooms. Our results showed that just days after a large bloom, the microzooplankton community grazing impact on phytoplankton biomass was exceptionally high (> 1000% d−1), yet the impact by rotifers was low (< 1% d−1). As the bloom diminished in September and October, the grazing impact of rotifers increased dramatically, specifically consuming substantial dinoflagellate (≤ 574%) and ciliate (≤ 382%) biomass daily. Analysis of rotifers in Vancouver Lake during these months showed the presence of large, carnivorous Asplanchna spp., which indicates multi-trophic grazing dynamics within the rotifer assemblage. We conclude that non-rotifer micro-grazers (i.e., ciliates) were likely responsible for the initial dissipation of cyanobacteria just after the bloom peak, while rotifers primarily removed micro-grazers later in autumn. This study highlights the trophic roles of micro-grazers in controlling harmful cyanobacteria blooms and quantifies the specific grazing contributions of rotifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data are available under supporting data.

Code availability

Available upon request.

References

  • Agasild, H., P. Zingel, I. Tõnno, J. Haberman & T. Nõges, 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 584: 167–177.

    Article  Google Scholar 

  • Arar, E. J., & G. B. Collins, 1997. In vitro determination of chlorophyll a and phaeophytin a in marine and freshwater algae by fluorescence, Method 445.0. National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, OH.

  • Bhagat, S. K. & J. F. Orsborn, 1971. A Summary Report on Water Quantity and Quality Studies of Vancouver Lake, Washington State University, Pullman, WA, Washington:

    Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1982. Seasonal patterns of feeding by natural populations of Keratella, Polyarthra, and Bosmina: clearance rates, selectivities, and contributions to community grazing. Limnology and Oceanography 27: 918–934.

    Article  Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1984. Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Sciences of the United States of America 81: 6427–6431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolam, B. A., G. Rollwagen-Bollens & S. M. Bollens, 2019. Feeding rates and prey selection of the invasive Asian clam, Corbicula fluminea, on microplankton in the Columbia River, USA. Hydrobiologia 833: 107–123.

    Article  CAS  Google Scholar 

  • Bollens, S. M., & G. Rollwagen-Bollens, 2009. Biological Assessment of the Plankton in Vancouver Lake, WA: Year One Annual Report. Washington State University Vancouver. http://www.vancouverlakepartnership.org/MapsMaterials/WSUYr1Report_Text.pdf.

  • Bornet, B. & C. Flahault, 1888. Annales des Sciences Naturelles. Botanique VII 7: 228.

    Google Scholar 

  • Boyer, J., G. Rollwagen-Bollens & S. Bollens, 2011. Microzooplankton grazing before, during and after a cyanobacterial bloom in Vancouver Lake, Washington, USA. Aquatic Microbial Ecology 64: 163–174.

    Article  Google Scholar 

  • Brunthaler, J., 1903. Sitzungsberichte Kaiserliche Akademie der Wissenschaften in Wien, Mathematisch-naturwissenschaftliche Klasse. Abteilung I, Mineralogie, Krystallographie, Botanik, Physiologie Der Pflanze 112: 289–293.

    Google Scholar 

  • Burian, A., M. J. Kainz, M. Schagerl & A. Yasindi, 2014. Species-specific separation of lake plankton reveals divergent food assimilation patterns in rotifers. Freshwater Biology 59: 1257–1265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmichael, W. W. & G. L. Boyer, 2016. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae 54: 194–212.

    Article  PubMed  Google Scholar 

  • Chang, K., H. Doi, Y. Nishibe & S. Nakano, 2010. Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki, A. priodonta and A. girodi in pond ecosystems. Journal of Limnology 69: 209–216.

    Article  Google Scholar 

  • Chick, J. H., A. P. Levchuk, K. A. Medley & J. H. Havel, 2010. Underestimation of rotifer abundance a much greater problem than previously appreciated. Limnology and Oceanography: Methods 8: 79–87.

    Google Scholar 

  • Chorus, I., I. Falconer, H. Salas & J. Bartram, 2000. Health risks caused by freshwater cyanobacteria in recreational waters. Journal of Toxicology and Environmental Health, Part B 3: 323–347.

    Article  CAS  Google Scholar 

  • Chorus, I. & M. Welker (eds), 2021. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management., 2nd ed. CRC Press, London, World Health Organization.

    Google Scholar 

  • Conde-Porcuna, J. M. & S. S. S. Sarma, 1995. Prey selection by Asplanchna girodi (Rotifera): the importance of prey defence mechanisms. Freshwater Biology 33: 341–348.

    Article  Google Scholar 

  • Davis, T. W., F. Koch, M. A. Marcoval, S. W. Wilhelm & C. J. Gobler, 2012. Mesozooplankton and microzooplankton grazing during cyanobacterial blooms in the western basin of Lake Erie. Harmful Algae 15: 26–35.

    Article  Google Scholar 

  • De Guerne, J., 1888. Excursions zoologiques dans les Isles de Fayal et de San Miguel (Açores). VII. Note monographique sur les rotifères de la famille Asplanchnidae. Campagnes scientifiques du yacht monégasque l'Hirondelle. Gauthier-Villars et Fils, Imprimeurs-Libraires, Paris (pp. 50–65).

  • DeMott, W. R. & F. Moxter, 1991. Foraging cyanobacteria by copepods: responses to chemical defense and resource abundance. Ecology 72: 1820–1834.

    Article  Google Scholar 

  • Díez, B. & K. Ininbergs, 2014. Chapter 3: Ecological services rendered by cyanobacteria: an economic perspective, Wiley, Somerset (pp. 43–63).

    Google Scholar 

  • Ehrenberg, C. G., 1832. Über die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abhandlungen der königlichen Akademie der Wissenschaften zu Berlin (für 1831) (pp. 1–154).

  • Elser, J. J., 1999. The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwater Biology 42: 537–543.

    Article  Google Scholar 

  • Frenken, T., J. Wierenga, E. van Donk, S. A. J. Declerck, L. N. de Senerpont Domis, T. Rohrlack & D. B. Van de Waal, 2018. Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton: chytrid zoospores support rotifer growth. Limnology and Oceanography 63: 2384–2393.

    Article  Google Scholar 

  • Fulton, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwater Biology 20: 263–271.

    Article  Google Scholar 

  • Fulton, R. S., III. & H. W. Paerl, 1987. Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. Journal of Plankton Research 9: 837–855.

    Article  Google Scholar 

  • Fulton, R. S. & H. W. Paerl, 1988. Effects of the blue-green alga Microcystis aeruginosa on zooplankton competitive relations. Oecologia 76: 383–389.

    Article  PubMed  Google Scholar 

  • Ger, K. A., S. Naus-Wiezer, L. De Meester & M. Lürling, 2019. Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnology and Oceanography 64: 1214–1227.

    Article  Google Scholar 

  • Ger, K. A., P. Urrutia-Cordero, P. C. Frost, L.-A. Hansson, O. Sarnelle, A. E. Wilson & M. Lürling, 2016. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54: 128–144.

    Article  PubMed  Google Scholar 

  • Gerphagnon, M., D. Latour, J. Colombet & T. Sime-Ngando, 2013. Fungal parasitism: life cycle, dynamics and impact on cyanobacterial blooms. PLoS ONE 8: e60894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, J. J., 1985. Escape response of the Rotifer Polyarthra: a high-speed cinematographic analysis. Oecologia 66: 322–331.

    Article  PubMed  Google Scholar 

  • Gilbert, J. J., 1990. Differential effects of Anabaena affinis on Cladocerans and Rotifers: mechanisms and implications. Ecology 71: 1727–1740.

    Article  Google Scholar 

  • Gilbert, J. J., & K. G. Bogdan, 1984. Rotifer grazing: in situ studies on selectivity and rates (pp. 97–133). In: D. G. Meyers and J. R. Strickler, editors. Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium.

  • Gilbert, J. J. & J. Jack, 1993. Rotifers as predators on small ciliates. Hydrobiologia 255(256): 247–253.

    Article  Google Scholar 

  • Gobler, C. J., T. W. Davis, K. J. Coyne & G. L. Boyer, 2007. Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae 6: 119–133.

    Article  CAS  Google Scholar 

  • Gosse, P. H., 1851. A catalogue of Rotifera found in Britain; with description of five new genera and thirty-two new species. The Annals and Magazine of Natural History 8: 197–203.

    Article  Google Scholar 

  • Gulati, R. D., J. Ejsmont-Karabin & G. Postema, 1993. Feeding in Euchlanis dilatata lucksiana Hauer on filamentous cyanobacteria and a prochlorophyte. Hydrobiologia 255: 269–274.

    Article  Google Scholar 

  • Gulati, R. D., J. Rooth & J. Ejsmont-Karabin, 1987. A laboratory study of feeding and assimilation in Euchlanis dilatata lucksiana. Hydrobiologia 147: 289–296.

    Article  Google Scholar 

  • Haney, J. F., R. S. Stemberger, M. A. Aliberti, E. Allan, S. Allard, D. J. Bauer, W. Beagen, S. R. Bradt, B. Carlson, S. C. Carlson, U. M. Doan, J. Dufrense, W. Godkin, S. Greene, A. Kaplan, E. Maroni, S. Melillo, A. Murby, J. Smith, B. Ortman, J. Quist, S. Reed, T. Rowin, M. Schmuck, & B. Travers, 2013. An Image-Based Key to the Zooplankton of North America, version 5.0. http://cfb.unh.edu/cfbkey/html/index.html.

  • Hansson, L.-A., S. Gustafsson, K. Rengefors & L. Bomark, 2007. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biology 52: 1290–1301.

    Article  CAS  Google Scholar 

  • Hillbricht-Ilkowska, A., 1983. Response of Planktonic Rotifers to the Eutrophication Process and to the Autumnal Shift of Blooms in Lake Biwa, Japan. Japanese Journal of Limnology (rikusuigaku Zasshi) 44: 93–106.

    Article  Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for Pelagic and Benthic Microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Horppila, J., L. Härkönen, N. Hellén, S. Estlander, Z. Pekcan-Hekim & A. Ojala, 2019. Rotifer communities under variable predation-turbulence combinations. Hydrobiologia 828: 339–351.

    Article  Google Scholar 

  • Hudson, C. T., 1885. On four new species of the genus Floscularia, and five new species of Rotifera. Journal of the Royal Microscopical Society 5: 608–614.

    Article  Google Scholar 

  • Ignoffo, T. R., S. M. Bollens & A. B. Bochdansky, 2005. The effects of thin layers on the vertical distribution of the rotifer, Brachionus plicatilis. Journal of Experimental Marine Biology and Ecology 316: 167–181.

    Article  Google Scholar 

  • James, M. R., 1991. Sampling and preservation methods for the quantitative enumeration of microzooplankton. New Zealand Journal of Marine and Freshwater Research 25: 305–310.

    Article  Google Scholar 

  • Kâ, S., J. M. Mendoza-Vera, M. Bouvy, G. Champalbert, R. N’Gom-Kâ & M. Pagano, 2012. Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia 679: 119–138.

    Article  CAS  Google Scholar 

  • Karabin, A. & J. Ejsmont-Karabin, 2005. An evidence for vertical migrations of small rotifers – a case of Rotifer community in a Dystrophic Lake. Hydrobiologia 546: 381–386.

    Article  Google Scholar 

  • Kellicott, D. S., 1879. A new rotifer. The American Journal of Microscopy and Popular Science 4: 19–20.

    Google Scholar 

  • Kirk, K. L. & J. J. Gilbert, 1992. Variation in herbivore response to chemical defenses: zooplankton foraging on toxic Cyanobacteria. Ecology 73: 2208–2217.

    Article  Google Scholar 

  • Klebs, G., 1883. Über die Organisation einiger Flagellatengruppen und ihre Beziehungen zu Algen und Infusorien. Untersuchungen aus dem Botanischen Institut zu Tübingen 1: 233–362, pls II, III.

  • Komárek, J. & J. W. G. Lund, 1990. What is Spirulina platensis in fact? Algological Studies 58: 1–13.

    Google Scholar 

  • Kosten, S., V. Huszar, E. Becares, L. Costa, E. Van Donk, L.-A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. Meester, B. Moss, M. Lürling, T. Noges, S. Romo & M. Scheffer, 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.

    Article  Google Scholar 

  • Kurmayer, R., 1999. Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. Journal of Plankton Research 21: 659–683.

    Article  Google Scholar 

  • Lair, N. & H. Oulad Ali, 1990. Grazing and assimilation rates of natural populations of planktonic rotifers Keratella cochlearis, Keratella quadrata and Kellicottia longispina in a eutrophic lake (Aydat, France). Hydrobiologia 194: 119–131.

    Article  Google Scholar 

  • Landry, M. R. & R. P. Hassett, 1982. Estimating the grazing impact of marine micro-zooplankton. Marine Biology 67: 283–288.

    Article  Google Scholar 

  • Landry, M. R., J. Kirshtein & J. Constantinou, 1995. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Marine Ecology Progress Series 120: 53–63.

    Article  Google Scholar 

  • Lee, T. A., G. Rollwagen-Bollens, & S. M. Bollens, 2015a. The influence of water quality variables on cyanobacterial blooms and phytoplankton community composition in a shallow temperate lake. Environmental Monitoring and Assessment 187.

  • Lee, T. A., G. Rollwagen-Bollens, S. M. Bollens & J. J. Faber-Hammond, 2015b. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. Ecotoxicology and Environmental Safety 114: 318–325.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T. A., S. M. Bollens, G. Rollwagen-Bollens & J. E. Emerson, 2016. The effects of eutrophication and invasive species on zooplankton community dynamics in a shallow temperate lake. Fundamental and Applied Limnology/archiv Für Hydrobiologie 188: 215–231.

    Article  Google Scholar 

  • Lemmerman, E., 1898. Beitrag zur Algenflora von Schlesien. Abhandlungen Naturwissenschaftlicher Verein Bremen 14: 1–520.

    Google Scholar 

  • Li, J., K. Yang, F. Chen, W. Lu, T. Fang, X. Zhao, H. Li & K. Cui, 2017. The impacts of crustacean zooplankton on a natural ciliate community: a short-term incubation experiment. Acta Protozoologica 2017: 289–301.

    Google Scholar 

  • Lionard, M., F. Azémar, S. Boulêtreau, K. Muylaert, M. Tackx & W. Vyverman, 2005. Grazing by meso- and microzooplankton on phytoplankton in the upper reaches of the Schelde estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science 64: 764–774.

    Article  Google Scholar 

  • Mazumder, A., D. R. S. Lean & W. D. Taylor, 1992. Dominance of small filter feeding zooplankton in the Lake Ontario food web. Journal of Great Lakes Research 18: 456–466.

    Article  Google Scholar 

  • Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.

    Article  CAS  Google Scholar 

  • Muirhead, J. R., J. Ejsmont-Karabin & H. J. Macisaac, 2006. Quantifying rotifer species richness in temperate lakes. Freshwater Biology 51: 1696–1709.

    Article  Google Scholar 

  • Müller, O.F., 1786. 367. Brachionus plicatilis. In Animalcula infusoria fluviatilia et marina, quæ detexit, systematice descripsit et ad vivum delineari curavit (pp. 344–345). Typis Nicolai Molleri Aulæ Regias Typographi, Hauniæ.

  • Obertegger, U. & G. Flaim, 2015. Community assembly of rotifers based on morphological traits. Hydrobiologia 753: 31–45.

    Article  Google Scholar 

  • Obertegger, U. & G. Flaim, 2018. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly? Hydrobiologia 823: 79–91.

    Article  Google Scholar 

  • Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. Journal of Limnology 70: 231.

    Article  Google Scholar 

  • Obertegger, U., H. A. Smith, G. Flaim & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.

    Article  Google Scholar 

  • O’Neil, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.

    Article  CAS  Google Scholar 

  • Orcutt, J. D. & M. L. Pace, 1984. Seasonal dynamics of rotifer and crustacean zooplankton populations in a eutrophic, monomictic lake with a note on rotifer sampling techniques. Hydrobiologia 119: 73–80.

    Article  Google Scholar 

  • Paerl, H. W., R. S. Fulton, P. H. Moisander & J. Dyble, 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World Journal 1: 76–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paerl, H. W., N. S. Hall & E. S. Calandrino, 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment 409: 1739–1745.

    Article  CAS  PubMed  Google Scholar 

  • Pallas, P. S., 1766. V. Brachionus. In Elenchus zoophytorum sistens generum adumbrationes generaliores et specierum cognitarum succinctas descriptiones, cum selectis auctorum synonymis (pp. 89–105). Hagae-Comitum, Netherlands.

  • Pourriot, R., 1977. Food and Feeding Habits of Rotifera (pp. 243–260). Proceedings of the First International Rotifer Symposium. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie, Lunz, Austria.

  • Quiblier-Lloberas, C., G. Bourdier, C. Amblard & D. Pepin, 1996. Impact of grazing on phytoplankton in Lake Pavin (France): Contribution of different zooplankton groups. Journal of Plankton Research 18: 305–322.

    Article  Google Scholar 

  • Rabalais, N. N., R. E. Turner, R. J. Diaz & D. Justic, 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science 66: 1528–1537.

    Article  Google Scholar 

  • Rodríguez, M. P. & T. Matsumura-Tundisi, 2000. Variation of density, species composition and dominance of Rotifers at a shallow tropical reservoir (Broa reservoir, SP, Brazil) in a short scale time. Revista Brasileira De Biologia 60: 01–09.

    Article  Google Scholar 

  • Rollwagen-Bollens, G., S. M. Bollens, A. Gonzalez, J. Zimmerman, T. Lee & J. Emerson, 2013. Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake. Hydrobiologia 705: 101–118.

    Article  CAS  Google Scholar 

  • Rollwagen-Bollens, G., T. Lee, V. Rose & S. Bollens, 2018. Beyond eutrophication: Vancouver Lake, WA, USA as a model system for assessing multiple, interacting biotic and abiotic drivers of harmful cyanobacterial blooms. Water 10: 757.

    Article  CAS  Google Scholar 

  • Rose, V., G. Rollwagen-Bollens & S. Bollens, 2017. Interactive effects of phosphorus and zooplankton grazing on cyanobacterial blooms in a shallow temperate lake. Hydrobiologia 788: 345–359.

    Article  CAS  Google Scholar 

  • Segers, H., 2008. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595: 49–59.

    Article  Google Scholar 

  • Sellner, K. G., D. C. Brownlee, M. H. Bundy, S. G. Brownlee & K. R. Braun, 1993. Zooplankton grazing in a Potomac River Cyanobacteria bloom. Estuaries 16: 859–872.

    Article  Google Scholar 

  • Soares, M. C. S., M. Lürling & V. L. M. Huszar, 2010. Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. Journal of Plankton Research 32: 999–1008.

    Article  CAS  Google Scholar 

  • Starkweather, P., 1980. Aspects of the feeding behavior and trophic ecology of suspension-feeding rotifers. Hydrobiologia 73: 63–72.

    Article  Google Scholar 

  • Starkweather, P. L., 1981. Trophic relationships between the rotifer Brachionus calyciflorus and the blue-green alga Anabaena flos-aquae. SIL Proceedings 1922–2010(21): 1507–1514.

    Google Scholar 

  • Starkweather, P. L. & P. E. Kellar, 1983. Utilization of cyanobacteria by Brachionus calyciflorus: Anabaena flos-aquae (NRC-44-1) as a sole or complementary food source. Hydrobiologia 104: 373–377.

    Article  Google Scholar 

  • Stelzer, C.-P., 1998. Feeding behaviour of the rotifer Ascomorpha ovalis: functional response, handling time and exploitation of individual Ceratium cells. Journal of Plankton Research 20: 1131–1144.

    Article  Google Scholar 

  • Stemberger, R. S., 1979. A Guide to Rotifers of the Laurentian Great Lakes. US Environmental Protection Agency, Washington DC.

  • Stemberger, R. S. & J. J. Gilbert, 1985. Body size, food concentration, and population growth in planktonic rotifers. Ecology 66: 1151–1159.

    Article  Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1987. Rotifer threshold food concentrations and the size-efficiency hypothesis. Ecology 68: 181–187.

    Article  Google Scholar 

  • Sterner, R. W., 1989. Resource competition during seasonal succession toward dominance by cyanobacteria. Ecology 70: 229–245.

    Article  Google Scholar 

  • Stewart, L. J. & D. G. George, 1987. Environmental factors influencing the vertical migration of planktonic rotifers in a hypereutrophic tarn. Hydrobiologia 147: 203–208.

    Article  Google Scholar 

  • Thomas, S. M., J. H. Chick & S. J. Czesny, 2017. Underestimation of microzooplankton is a macro problem: one size fits all zooplankton sampling needs alterations. Journal of Great Lakes Research 43: 91–101.

    Article  Google Scholar 

  • Vanderploeg, H. A. & D. Scavia, 1979a. Two electivity indices for feeding with special reference to zooplankton grazing. Journal of the Fisheries Board of Canada 36: 362–365.

    Article  Google Scholar 

  • Vanderploeg, H. A. & D. Scavia, 1979b. Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecological Modelling 7: 135–149.

    Article  Google Scholar 

  • Wallace, R. L., & T. W. Snell, 2010. Rotifera (pp. 173–235). In: Thorp, J. & A. Covich, editors. Ecology and Classification of North American Freshwater Invertebrates. Third edition. Elsevier.

  • Wallace, R. L., T. W. Snell & H. A. Smith, 2015. Chapter 13 - Phylum Rotifera. In Thorp, J. H. & D. C. Rogers (eds), Thorp and Covich’s Freshwater Invertebrates 4th ed. Academic Press, Boston: 225–271.

    Chapter  Google Scholar 

  • Yang, X., X. Wu, H. Hao & Z. He, 2008. Mechanisms and assessment of water eutrophication. Journal of Zhejiang University Science B 9: 197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Julie Zimmerman and other members of the WSU Vancouver Aquatic Ecology lab for assistance with experiments and the Vancouver Lake Sailing Club for providing dock access for data collection. Additional comments on study conceptualization, design, and on initial manuscript versions were provided by Stephen Bollens and Jonah Piovia-Scott.

Funding

Funding was provided by Washington State Lake Protection Association (WALPA) David Lamb Memorial Scholarship; Robert Lane Fellowship in Environmental Science, Francis Rush Bradley Excellence Fund, Craft Family Scholarship, and Boeing Graduate Fellowship in Environmental Studies awarded by WSU to KS; and by a Murdock Charitable Trust “Partners in Science” grant (#PIS201812553) to GRB.

Author information

Authors and Affiliations

Authors

Contributions

KS and GRB contributed to the conceptualization and design of this study. Material preparation, experimentation, and data collection were performed by KS and GRB with guidance from SEH. KS conducted microscopical and statistical analyses. The manuscript was written by KS; GRB and SEH provided comprehensive reviews of subsequent versions of the manuscript.

Corresponding author

Correspondence to Kathryn Sweeney.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical approval

Not required.

Consent to participate

All authors read and approved the final manuscript and consent to peer review.

Consent for publication

All authors consent the final manuscript to be published.

Additional information

Handling Editor: Maria de los Angeles Gonzalez Sagrario

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2022_4885_MOESM1_ESM.tiff

Supplementary Fig. 1 Net phytoplankton growth rates as a function of dilution level, measured from monthly microzooplankton community grazing experiments conducted using water from Vancouver Lake May–October 2019. Linear regression slopes significantly different from zero are represented with asterisks (* = p < 0.05, ** = p <0.01, *** = p <0.001), the negatives values of which represent the microzooplankton grazing rate (d-1). Y-intercept of each regression line represent the intrinsic phytoplankton growth rate (d-1). Supplementary file1 (TIFF 14220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweeney, K., Rollwagen-Bollens, G. & Hampton, S.E. Grazing impacts of rotifer zooplankton on a cyanobacteria bloom in a shallow temperate lake (Vancouver Lake, WA, USA). Hydrobiologia 849, 2683–2703 (2022). https://doi.org/10.1007/s10750-022-04885-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04885-x

Keywords

Navigation