Skip to main content

Advertisement

Log in

Variability of fish larvae assemblages relative to mesoscale features in the deep water region of the southern Gulf of Mexico

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the Gulf of Mexico (GoM), mesoscale features strongly influence hydrographic and circulation patterns, which can favor larval retention and/or transport. Most ichthyoplankton studies in the southern GoM (south of 25°N) have focused on the continental shelves and the Bay of Campeche (BoC), and little is known about larval fish assemblages in the oceanic region. We compared the structure of the assemblages among stations from contrasting mesoscale features in the deep water region (depths greater than 1000 m), hypothesizing that there is a higher similarity in assemblages from stations within the same feature. Ichthyoplankton samples were collected in the upper 200 m during two oceanographic cruises. Analyses of sea surface heights and temperature anomaly profiles allowed us to identify the stations corresponding to specific mesoscale features, including cyclonic and anticyclonic eddies, upwelling, river discharge waters transported offshore, and the Loop Current. Larval fish assemblages were not strictly differentiated among features, except for one assemblage identified within an anticyclonic eddy. Stations within the BoC could be discriminated from the northern oceanic region due to high larval fish abundances and to the occurrence of taxa that inhabit coastal and neritic habitats as adults, which are transported offshore due to local oceanographic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material (data transparency)

All data generated or analyzed during this study are included in this published article and its supplementary information file.

Code availability

Not applicable.

References

  • Asch, R. G. & D. M. Checkley Jr., 2013. Dynamic height: a key variable for identifying the spawning habitat of small pelagic fishes. Deep Sea Research Part i: Oceanographic Research Papers 71: 79–91.

    Article  CAS  Google Scholar 

  • Atwood, E., J. T. Duffy-Anderson, J. K. Horne & C. Ladd, 2010. Influence of mesoscale eddies on ichthyoplankton assemblages in the Gulf of Alaska. Fisheries Oceanography 19: 493–507.

    Article  Google Scholar 

  • Avendaño-Ibarra, R., E. Godínez-Domínguez, G. Aceves-Medina, E. González-Rodríguez & A. Trasviña, 2013. Fish larvae response to biophysical changes in the Gulf of California, Mexico (winter-summer). Journal of Marine Biology 2013: 1–17.

    Article  Google Scholar 

  • Bakun, A., 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina 70: 105–122.

    Article  Google Scholar 

  • Bianchi, T. S., J. R. Pennock & R. R. Twilley (eds), 1998. Biogeochemistry of Gulf of Mexico Estuaries. Wiley, New York.

    Google Scholar 

  • Biggs, D. C. & P. H. Ressler, 2001. Distribution and abundance of phytoplankton, zooplankton, ichthyoplankton, and micronekton in the deepwater Gulf of Mexico. Gulf of Mexico Science 19: 2.

    Article  Google Scholar 

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  • Carassou, L., F. J. Hernandez Jr., S. P. Powers & W. M. Graham, 2012. Cross-shore, seasonal, and depth-related structure of ichthyoplankton assemblages in Coastal Alabama. Transactions of the American Fisheries Society 141: 1137–1150.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

  • Compaire, J. P. Pérez‐Brunius, P.S.A. Jiménez‐Rosenberg, J. Rodríguez-Outerelo, L.D.P. Echeverri-García & S.Z. Herzka. 2021. Connectivity of coastal and neritic fish larvae to the deep waters. Limnology and Oceanography 66: 2423–2441.

    Article  Google Scholar 

  • Contreras-Catala, F., L. Sánchez-Velasco, M. F. Lavín & V. M. Godínez, 2012. Three-dimensional distribution of larval fish assemblages in an anticyclonic eddy in a semi-enclosed sea (Gulf of California). Journal of Plankton Research 34: 548–562.

    Article  Google Scholar 

  • Copernicus Marine Service, 2020. Ocean products: sea surface height and chlorophyll a data. Downloaded on May 20, 2020. https://resources.marine.copernicus.eu.

  • Cowen, R. K. & S. Sponaugle, 2009. Larval dispersal and marine population connectivity. Annual Review of Marine Science 1: 443–466.

    Article  PubMed  Google Scholar 

  • Damien, P., O. Pasqueron de Fommervault, J. Sheinbaum, J. Jouanno, V. F. Camacho-Ibar & O. Duteil, 2018. Partitioning of the open waters of the Gulf of Mexico based on the seasonal and interannual variability of chlorophyll concentration. Journal of Geophysical Research: Oceans 123: 2592–2614.

    Article  Google Scholar 

  • Daudén-Bengoa, G., S. P. A. Jiménez-Rosenberg, J. C. Compaire, L. P. Echeverri-García, P. Pérez-Brunius & S. Z. Herzka, 2020. Larval fish assemblages of myctophids in the deep water region of the southern Gulf of Mexico linked to oceanographic conditions. Deep-Sea Research Part i: Oceanographic Research Papers 155: 103181.

    Article  Google Scholar 

  • Espinosa-Fuentes, M. L. & C. Flores-Coto, 2004. Cross-shelf and vertical structure of ichthyoplankton assemblages in continental shelf waters of the Southern Gulf of Mexico. Estuarine, Coastal and Shelf Science 59: 333–352.

    Article  Google Scholar 

  • Färber-Lorda, J., G. Athíe, V. C. Ibar, L. W. Daessle & O. Molina, 2019. The relationship between zooplankton distribution and hydrography in oceanic waters of the Southern Gulf of Mexico. Journal of Marine Systems 192: 28–41.

    Article  Google Scholar 

  • Felder, D. L. & D. K. Camp (eds), 2009. Gulf of Mexico Origin, Waters, and Biota: Biodiversity. Texas AM University Press, College Station.

    Google Scholar 

  • Field, J., K. Clarke & R. Warwick, 1982. Practical strategy for analysing multispecies distribution patterns. Marine Ecology Progress Series 8: 37–52.

    Article  Google Scholar 

  • Flores-Coto, C. & F. Zavala-García, 1982. Descripción de huevos y larvas de Dormitator maculatus (Bloch) de la Laguna de Alvarado, Veracruz. (Pisces: Gobiidae). Anales Instituto Ciencias Del Mar y Limnología Universidad Nacional Autónoma De México 9: 127–140.

    Google Scholar 

  • Flores-Coto, C., M. D. L. L. Espinosa, F. G. Zavala & L. A. Sanvicente, 2009. Ictioplancton del sur del Golfo de México: un compendio. Hidrobiológica 19: 49–76.

    Google Scholar 

  • Flores-Coto, C., L. Sanvicente-Añorve, F. Zavala-García, J. Zavala-Hidalgo & R. Funes-Rodríguez, 2014. Environmental factors affecting structure and spatial patterns of larval fish assemblages in the southern Gulf of Mexico. Revista De Biología Marina y Oceanografía 49: 307–321.

    Article  Google Scholar 

  • Froese, R. & D. Pauly (eds), 2019. FishBase. World Wide Web electronic publication. www.fishbase.org, version (12/2019).

  • Fu, L. L., D. B. Chelton, P. Y. Le Traon & R. Morrow, 2010. Eddy dynamics from satellite altimetry. Oceanography 23: 14–25.

    Article  Google Scholar 

  • Fuiman, L. A., & R. G. Werner, 2002. Fishery Science. The Unique Contributions of Early Life Stages. Blackwell Science Ltd, Cornwall, UK

    Google Scholar 

  • Gil-Agudelo, D. L., C. E. Cintra-Buenrostro, J. Brenner, P. González-Díaz, W. Kiene, C. Lustic & H. Pérez-España, 2020. Coral reefs in the Gulf of Mexico large marine ecosystem: conservation status, challenges, and opportunities. Frontiers in Marine Science 6: 807.

    Article  Google Scholar 

  • Grimes, C. & J. Finucane, 1991. Spatial distribution and abundance of larval and juvenile fish, chlorophyll and macrozooplankton around the Mississippi River discharge plume, and the role of the plume in fish recruitment. Marine Ecology Progress Series 75: 109–119.

    Article  Google Scholar 

  • Hamilton, P., K. A. Donohue, R. R. Leben, A. Lugo-Fernández & R. E. Green, 2011. Loop Current observations during spring and summer of 2010: Description and historical perspective. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series 195: 117–130.

    CAS  Google Scholar 

  • Hernandez, F. J., Jr., S. P. Powers & W. M. Graham, 2010. Seasonal variability in ichthyoplankton abundance and assemblage composition in the northern Gulf of Mexico off Alabama. Fishery Bulletin 108: 193–207.

    Google Scholar 

  • Hernandez, F. J., Jr., L. Carassou, W. M. Graham & S. P. Powers, 2013. Evaluation of the taxonomic sufficiency approach for ichthyoplankton community analysis. Marine Ecology Progress Series 491: 77–90.

    Article  Google Scholar 

  • Jouanno, J., E. Pallàs-Sanz & J. Sheinbaum, 2018. Variability and dynamics of the Yucatan upwelling: high-resolution simulations. Journal of Geophysical Research: Oceans 123: 1251–1262.

    Article  Google Scholar 

  • Keane, J. P. & F. J. Neira, 2008. Larval fish assemblages along the south-eastern Australian shelf: linking mesoscale non-depth-discriminate structure and water masses. Fisheries Oceanography 17: 263–280.

    Article  Google Scholar 

  • Laprise, R. & P. Pepin, 1995. Factors influencing the spatio-temporal occurrence of fish eggs and larvae in a northern, physically dynamic coastal environment. Marine Ecology Progress Series 122: 73–92.

    Article  Google Scholar 

  • León-Chávez, C., L. Sánchez-Velasco, E. Beier, M. F. Lavín, V. M. Godínez & J. Färber-Lorda, 2010. Larval fish assemblages and circulation in the Eastern Tropical Pacific in Autumn and Winter. Journal of Plankton Research 32: 397–410.

    Article  Google Scholar 

  • Lindo-Atichati, D., F. Bringas, G. Goni, B. Muhling, F. E. Muller-Karger & S. Habtes, 2012. Varying mesoscale features influence larval fish distribution in the northern Gulf of Mexico. Marine Ecology Progress Series 463: 245–257.

    Article  Google Scholar 

  • Lobel, P. S. & A. R. Robinson, 1988. Larval fishes and zooplankton in a cyclonic eddy in Hawaiian waters. Journal of Plankton Research 10: 1209–1223.

    Article  Google Scholar 

  • Mackas, D. L., M. Tsurumi, M. D. Galbraith & D. R. Yelland, 2005. Zooplankton distribution and dynamics in a North Pacific Eddy of coastal origin: II. Mechanisms of eddy colonization by and retention of offshore species. Deep Sea Research Part II: Topical Studies in Oceanography 52: 1011–1035.

    Article  Google Scholar 

  • Martínez-López, B. & J. Zavala-Hidalgo, 2009. Seasonal and interannual variability of cross-shelf transports of chlorophyll in the Gulf of Mexico. Journal of Marine Systems 77: 1–20.

    Article  Google Scholar 

  • Merino, M., 1997. Upwelling on the Yucatan Shelf: hydrographic evidence. Journal of Marine Systems 13: 101–121.

    Article  Google Scholar 

  • Meunier, T., J. Sheinbaum, E. Pallàs-Sanz, M. Tenreiro, J. Ochoa, A. Ruiz-Angulo, X. Carton & C. de Marez, 2020. Heat content anomaly and decay of warm-core rings: the case of the Gulf of Mexico. Geophysical Research Letters 47: e2019GL085600.

    Article  Google Scholar 

  • Miller, T. J., 2007. Contribution of individual-based coupled physical-biological models to understanding recruitment in marine fish populations. Marine Ecology Progress Series 347: 127–138.

    Article  Google Scholar 

  • Monreal-Gómez, M. A., D. A. Salas-de-León & H. Velasco-Mendoza, 2004. La hidrodinámica del Golfo de México. In: Diagnóstico ambiental del Golfo de México. Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Instituto de Ecología, A.C., Harte Research Institute for Gulf of Mexico Studies, México, D.F.: 47–68.

  • Moyano, M. & S. Hernández-León, 2010. Intra and interannual variability in the larval fish assemblage off Gran Canaria (Canary Islands) over 2005–2007. Marine Biology 158: 257–273.

    Article  Google Scholar 

  • Muhling, B. A., L. E. Beckley & M. P. Olivar, 2007. Ichthyoplankton assemblage structure in two meso-scale Leeuwin Current eddies, eastern Indian Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 54: 1113–1128.

    Article  Google Scholar 

  • Muhling, B. A., R. H. Smith, L. Vásquez-Yeomans, J. T. Lamkin, E. M. Johns, L. Carrillo, E. Sosa-Cordero & E. Malca, 2013. Larval fish assemblages and mesoscale oceanographic structure along the Mesoamerican Barrier Reef System. Fisheries Oceanography 22: 409–428.

    Article  Google Scholar 

  • Muller-Karger, F. E., J. P. Smith, S. Werner, R. Chen, M. Roffer, Y. Liu, B. Muhling, D. Lindo-Atichati, J. Lamkin, J. Cerdeira-Estrada & D. B. Enfield, 2015. Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Progress in Oceanography 134: 54–76.

    Article  Google Scholar 

  • Nakata, H., S. Kimura, Y. Okazaki & A. Kasai, 2000. Implications of meso-scale eddies caused by frontal disturbances of the Kuroshio Current for anchovy recruitment. ICES Journal of Marine Science 57: 143–152.

    Article  Google Scholar 

  • Ocaña-Luna, A. & M. Sánchez-Ramírez, 2003. Diversity of ichthyoplankton in Tampamachoco Lagoon, Veracruz, Mexico. Anales Del Instituto De Biología, Serie Zoología 74: 179–193.

    Google Scholar 

  • Pasqueron de Fommervault, O., P. Perez-Brunius, P. Damien, V. F. Camacho-Ibar & J. Sheinbaum, 2017. Temporal variability of chlorophyll distribution in the Gulf of Mexico: bio-optical data from profiling floats. Biogeosciences 14: 5647–5662.

    Article  Google Scholar 

  • Pérez-Brunius, P., P. García-Carrillo, J. Dubranna, J. Sheinbaum & J. Candela, 2012. Direct observations of the upper layer circulation in the southern Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography 85: 182–194.

    Article  Google Scholar 

  • QGIS Development Team, 2020. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.

  • Richards, W. J. (ed), 2006. Early Stages of Atlantic fishes: An Identification Guide for the Western Central North Atlantic. CRC Press, Boca Raton.

    Google Scholar 

  • Richards, W. J., M. F. McGowan, T. Leming, J. T. Lamkin & S. Kelley, 1993. Larval fish assemblages at the Loop Current boundary in the Gulf of Mexico. Bulletin of Marine Science 53: 475–537.

    Google Scholar 

  • Rodríguez, J. M., E. D. Barton, S. Hernández-León & J. Arístegui, 2004. The influence of mesoscale physical processes on the larval fish community in the Canaries CTZ, in summer. Progress in Oceanography 62: 171–188.

    Article  Google Scholar 

  • Roy, C., 1998. An upwelling-induced retention area off Senegal: a mechanism to link upwelling and retention processes. South African Journal of Marine Science 19: 89–98.

    Article  Google Scholar 

  • Sabatés, A., J. Salat & M. P. Olivar, 2001. Advection of continental water as an export mechanism for anchovy, Engraulis encrasicolus, larvae. Scientia Marina (barcelona) 65: 77–87.

    Article  Google Scholar 

  • Salas-de-León, D. A., M. A. Monreal-Gómez & L. Sanvicente-Añorve, 1996. Influence de la circulation à long terme sur la répartition des organismes zooplanctoniques dans la Baie de Campeche, Mexique. Oceanologica Acta 21: 87–93.

    Article  Google Scholar 

  • Sánchez-Velasco, L., M. F. Lavín, S. P. A. Jiménez-Rosenberg, V. M. Godínez, E. Santamaría-del-Angel & D. U. Hernández-Becerril, 2013. Three-dimensional distribution of fish larvae in a cyclonic eddy in the Gulf of California during the summer. Deep Sea Research Part i: Oceanographic Research Papers 75: 39–51.

    Article  Google Scholar 

  • Sanvicente-Añorve, L., C. Flores-Coto & L. Sánchez-Velasco, 1998. Spatial and seasonal patterns of larval fish assemblages in the southern Gulf of Mexico. Bulletin of Marine Science 62: 17–30.

    Google Scholar 

  • Sanvicente-Añorve, L., C. Flores-Coto & X. Chiappa-Carrara, 2000. Temporal and spatial scales of ichthyoplankton distribution in the Southern Gulf of Mexico. Estuarine, Coastal and Shelf Science 51: 463–475.

    Article  Google Scholar 

  • Schlitzer, R., 2013. Ocean Data View software. http://odv.awi-bremerhaven.de.

  • Siegel, D. A., S. Mitarai, C. J. Costello, S. D. Gaines, B. E. Kendall, R. R. Warner & K. B. Winters, 2008. The stochastic nature of larval connectivity among nearshore marine populations. Proceedings of the National Academy of Sciences 105: 8974–8979.

    Article  CAS  Google Scholar 

  • Smith, P. E. & S. L. Richardson, 1977. Standard Techniques for Pelagic Fish Egg and Larvae Surveys, FAO, Rome:

    Google Scholar 

  • Smith, K. A., M. T. Gibbs, J. Middleton & I. Suthers, 1999. Short term variability in larval fish assemblages of the Sydney shelf: tracers of hydrographic variability. Marine Ecology Progress Series 178: 1–15.

    Article  Google Scholar 

  • Somerfield, P. J. & K. R. Clarke, 2013. Inverse analysis in non-parametric multivariate analyses: distinguishing groups of associated species which covary coherently across samples. Journal of Experimental Marine Biology and Ecology 449: 261–273.

    Article  Google Scholar 

  • Sturges, W. & R. Leben, 2000. Frequency of ring separations from the Loop Current in the Gulf of Mexico: a revised estimate. Journal of Physical Oceanography 30: 1814–1819.

    Article  Google Scholar 

  • TeoBoustanyBlock, S. L. H. A. M. B. A., 2007. Oceanographic preferences of Atlantic bluefin tuna, Thunnus thynnus, on their Gulf of Mexico breeding grounds. Marine Biology 152: 1105–1119.

    Article  Google Scholar 

  • Thorrold, S. R. & A. D. McKinnon, 1995. Response of larval fish assemblages to a riverine plume in coastal waters of the central Great Barrier Reef lagoon. Limnology and Oceanography 40: 177–181.

    Article  Google Scholar 

  • Van der Lingen, C. D. & J. A. Huggett, 2003. The role of ichthyoplankton surveys in recruitment research and management of South African anchovy and sardine. In: The Big Fish Bang: Proceedings of the 26th Annual Larval Fish Conference. Institute of Marine Research, Bergen: 303–343.

  • Zavala-Hidalgo, J., A. Gallegos-García, B. Martínez-López, S. L. Morey & J. J. O’Brien, 2006. Seasonal upwelling on the western and southern shelves of the Gulf of Mexico. Ocean Dynamics 56: 333–338.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mexico’s Instituto Nacional de Ecología y Cambio Climático of the Secretaría de Medio Ambiente y Recursos Naturales (INECC-SEMARNAT) and the Fondo Institucional del Consejo Nacional de Ciencia y Tecnología (FOINS-CONACYT) for financing the project “Baseline studies of the deepwater region of the Gulf of Mexico in response to the Deepwater Horizon oil spill”. L. Echeverri-García was supported by a graduate research fellowship awarded by CONACYT. We thank the scientific participants of the XIXIMI cruises for help with sampling, the crew of the B/O Justo Sierra, the Ichthyoplankton Laboratory at IPN-CICIMAR and the Laboratory of Fisheries Ecology in CICESE for aid in sample processing. This study has been conducted using E.U. Copernicus Marine Service Information http://marine.copernicus.eu/. We are very grateful for the careful and constructive comments of the two reviewers that reviewed this manuscript.

Funding

Mexico’s Instituto Nacional de Ecología y Cambio Climático of the Secretaría de Medio Ambiente y Recursos Naturales (INECC-SEMARNAT) and the Fondo Institucional del Consejo Nacional de Ciencia y Tecnología (FOINS-CONACYT) financed the project “Baseline studies of the deepwater region of the Gulf of Mexico in response to the Deepwater Horizon oil spill.”

Author information

Authors and Affiliations

Authors

Contributions

Laura del Pilar Echeverri-García and Sharon Z. Herzka designed the study, Laura del Pilar Echeverri-García and Sylvia P. A. Jiménez-Rosenberg identified the larvae, Laura del Pilar Echeverri-García, Gonzalo Daudén Bengoa and Jesus C. Compaire analyzed oceanographic data. All authors contributed to interpretation and the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sharon Z. Herzka.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling editor: Sofie Spatharis

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author Vicente Ferreira is deceased.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Pilar Echeverri-García, L., Daudén-Bengoa, G., Compaire, J.C. et al. Variability of fish larvae assemblages relative to mesoscale features in the deep water region of the southern Gulf of Mexico. Hydrobiologia 849, 1471–1493 (2022). https://doi.org/10.1007/s10750-022-04797-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04797-w

Keywords

Navigation