Skip to main content

Advertisement

Log in

Effect of flooding gradient on soil seedbank and standing vegetation in a disconnecting side channel of the Loire River (France)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

This article has been updated

Abstract

This research aimed to disentangle the role of the connectivity gradient as a dispersal and environmental filter. This was done by comparing community composition and plant strategies (i.e. competition, stress-tolerance and ruderalness) in the soil seedbank (SSB) to that in the standing vegetation (SV). The study took place in a disconnecting side channel of the Loire River (France). SV was recorded in-situ and SSB was analyzed using the seedling emergence method. Seedbank density was 512.80 (SD = 329.43) seeds per m2, species richness was similar in SSB and SV (42 and 43, respectively), and overall Sørensen similarity between both compartments was 0.45. Species composition in the soil seed bank differed between banks and thalweg while in SV it differed moreover along the side channel. With regard to Grime’s C–S–R strategies, ruderal strategy dominated in the SSB, while environmental filters favored stress-tolerators in the SV. Usual indicators in seedbank studies (species richness, density and similarity) were inefficient to describe processes. Results moreover highlighted the prevalence of lotic over lentic conditions in structuring seedbanks and standing vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not available.

Change history

  • 12 February 2022

    In the Author Contributions section the names have been stated in full

References

  • Abernethy, V. J. & N. J. Willby, 1999. Changes along a disturbance gradient in the density and composition of propagule banks in floodplain aquatic habitats. Plant Ecology 140: 177–190.

    Google Scholar 

  • Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.

    Google Scholar 

  • Anderson, M. J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62: 245–253.

    Google Scholar 

  • Anderson, M. J., 2017. Permutational multivariate analysis of variance (PERMANOVA) In Balakrishnan, N., T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (eds), Wiley StatsRef: Statistics Reference Online. Wiley, Chichester: 1–15, https://doi.org/10.1002/9781118445112.stat07841.

  • Baskin, C. C. & J. M. Baskin, 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, Elsevier/AP, San Diego:

    Google Scholar 

  • Bejarano, M. D., C. Nilsson & F. C. Aguiar, 2018. Riparian plant guilds become simpler and most likely fewer following flow regulation. Journal of Applied Ecology 55: 365–376.

    Google Scholar 

  • Bigwood, D. W. & D. W. Inouye, 1988. Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69: 497–507.

    Google Scholar 

  • Boedeltje, G., J. P. Bakker, A. Ten Brinke, J. M. Van Groenendael & M. Soesbergen, 2004. Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology 92: 786–796.

    Google Scholar 

  • Bornette, G., E. Tabacchi, C. Hupp, S. Puijalon & J. C. Rostan, 2008. A model of plant strategies in fluvial hydrosystems. Freshwater Biology 53: 1692–1705.

    Google Scholar 

  • Bossuyt, B. & O. Honnay, 2008. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. Journal of Vegetation Science 19: 10.

    Google Scholar 

  • Bourgeois, B., E. González, A. Vanasse, I. Aubin & M. Poulin, 2016. Spatial processes structuring riparian plant communities in agroecosystems: implications for restoration. Ecological Applications 26: 2103–2115.

    PubMed  Google Scholar 

  • Bourgeois, B., C. Boutin, A. Vanasse & M. Poulin, 2017. Divergence between riparian seed banks and standing vegetation increases along successional trajectories. Journal of Vegetation Science 28: 787–797.

    Google Scholar 

  • Casanova, M. T., 2015. The seed bank as a mechanism for resilience and connectivity in a seasonal unregulated river. Aquatic Botany 124: 63–69.

    Google Scholar 

  • Cho, H.-J., S.-N. Jin, H. Lee, R. H. Marrs & K.-H. Cho, 2018. The relationship between the soil seed sank and above-ground vegetation in a sandy floodplain, South Korea. Ecology and Resilient Infrastructure 5: 145–155.

    Google Scholar 

  • Combroux, I. C. S. & G. Bornette, 2004. Propagule banks and regenerative strategies of aquatic plants. Journal of Vegetation Science 15: 13–20.

    Google Scholar 

  • Combroux, I. C. S., G. Bornette & C. Amoros, 2002. Plant regenerative strategies after a major disturbance: the case of a riverine wetland restoration. Wetlands 22: 234–246.

    Google Scholar 

  • Cornier, T., 2002. La végétation alluviale de la Loire entre le Charolais et l’Anjou: essai de modélisation de l’hydrosystème Ecologie végétale, Université de Tours, Tours:

    Google Scholar 

  • Corenblit, D., E. Tabacchi, J. Steiger & A. M. Gurnell, 2007. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Reviews 84(1–2):56-86. https://doi.org/10.1016/j.earscirev.2007.05.004.

    Article  Google Scholar 

  • Eggenberg, S., A. Möhl & C. Purro, 2013. Flora Vegetativa: un guide pour déterminer les plantes de Suisse à l’état végétatif, Rossolis, Bussigny:

    Google Scholar 

  • Ehrlen, J. & O. Eriksson, 2000. Dispersal limitation and patch occupancy in forest herbs. Ecology 81: 1667–1674.

    Google Scholar 

  • Fraaije, R. G. A., C. Poupin, J. T. A. Verhoeven & M. B. Soons, 2019. Functional responses of aquatic and riparian vegetation to hydrogeomorphic restoration of channelized lowland streams and their valleys. Journal of Applied Ecology 56: 1007–1018.

    Google Scholar 

  • Fraaije, R. G. A., C. J. F. ter Braak, B. Verduyn, L. B. S. Breeman, J. T. A. Verhoeven & M. B. Soons, 2015. Early plant recruitment stages set the template for the development of vegetation patterns along a hydrological gradient. Functional Ecology 29: 971–980.

    Google Scholar 

  • Gargominy, O., S., Tercerie, C., Régnier, T., Ramage, P., Dupont, E., Vandel, P., Daszkiewicz, G., Léotard, R., Courtecuisse, P., Antonetti, A., Canard, A., Lévêque, S., Leblond, J.-C., De Massary, P., Haffner, H., Jourdan, M., Dewynter, A., Horellou, P., Noël, T., Noblecourt, J., Comolet, J., Touroult, J., Barbut, Q., Rome, E., Delfosse, J.-F., Bernard, B., Bock, V., Malécot, V., Boullet, V., Hugonnot, S., Robbert Gradstein, E., Lavocat Bernard, C., Ah-Peng, P.A., Moreau, & M., Lebouvier, 2019. TAXREF v13.0, référentiel taxonomique pour la France. Muséum national d'Histoire naturelle, Paris.

  • Garssen, A. G., A. Baattrup-Pedersen, L. A. C. J. Voesenek, J. T. A. Verhoeven & M. B. Soons, 2015. Riparian plant community responses to increased flooding: a meta-analysis. Global Change Biology 21: 2881–2890.

    PubMed  Google Scholar 

  • Goodson, J. M., A. M. Gurnell, P. G. Angold, & I. P. Morrissey. 2001. Riparian seed banks: structure process and implications for riparian management. Progress in Physical Geography: Earth and Environment 25(3): 301–325. https://doi.org/10.1177/030913330102500301.

    Article  Google Scholar 

  • Goodson, J. M., A. M. Gurnell, P. G. Angold & I. P. Morrissey, 2002. Riparian seed banks along the lower River Dove, UK: their structure and ecological implications. Geomorphology 47: 45–60.

    Google Scholar 

  • Goodson, J. M., A. M. Gurnell, P. G. Angold & I. P. Morrissey, 2003. Evidence for hydrochory and the deposition of viable seeds within winter flow-deposited sediments: the River Dove, Derbyshire, UK. River Research and Applications 19: 317–334.

    Google Scholar 

  • Greulich, S., R. Chevalier & M. Villar, 2019. Soil seed banks in the floodplain of a large river: a test of hypotheses on seed bank composition in relation to flooding and established vegetation. Journal of Vegetation Science 30: 732–745.

    Google Scholar 

  • Grime, J. P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111: 1169–1194.

    Google Scholar 

  • Gurnell, A. M., 2007. Analogies between mineral sediment and vegetative particle dynamics in fluvial systems. Geomorphology 89: 9–22.

    Google Scholar 

  • Gurnell, A. M., J. M. Goodson, P. G. Angola, I. P. Morrissey, G. E. Petts & J. Steiger, 2004. Vegetation propagule dynamics and fluvial geomorphology. In Bennett, S. J. & A. Simon (eds), Water Science and Application American Geophysical Union, Washington: 209–219.

    Google Scholar 

  • Gurnell, A., K. Thompson, J. Goodson & H. Moggridge, 2008. Propagule deposition along river margins: linking hydrology and ecology: propagule deposition along river margins. Journal of Ecology 96: 553–565.

    Google Scholar 

  • Gurnell, A. M., D. Corenblit, D. García de Jalón, M. González del Tánago, R. C. Grabowski, M. T. O’Hare & M. Szewczyk, 2016. A Conceptual model of vegetation-hydrogeomorphology interactions within river corridors. River Research and Applications 32: 142–163.

    Google Scholar 

  • Gurnell, A. M., W. Bertoldi, R. A. Francis, J. Gurnell & U. Mardhiah, 2019. Understanding processes of island development on an island braided river over timescales from days to decades. Earth Surface Processes and Landforms 44: 624–640.

    Google Scholar 

  • Hervé, M., 2020. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. https://CRAN.R-project.org/package=RVAideMemoire.

  • Holguín, J. E., M. Crepy, G. G. Striker & F. P. O. Mollard, 2020. Dormancy breakage and germination are tightly controlled by hypoxic submergence water on Echinochloa crus-galli seeds from an accession resistant to anaerobic germination. Seed Science Research 30: 262–267.

    Google Scholar 

  • Hopfensperger, K. N., 2007. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116: 1438–1448.

    Google Scholar 

  • Husband, B. C. & S. C. H. Barrett, 1996. A metapopulation perspective in plant population biology. The Journal of Ecology 84: 461–469.

    Google Scholar 

  • ISL Ingénierie, 2018. Exploitation de données hydrologiques et topographiques pour alimenter des indicateurs de suivi et d’évaluation sur la Loire de Montsoreau à Nantes. GIPLE, Nantes: 70.

  • Johansson, M. E., C. Nilsson & E. Nilsson, 1996. Do rivers function as corridors for plant dispersal? Journal of Vegetation Science 7: 593–598.

    Google Scholar 

  • Junk, W. J., & K. M. Wantzen, 2004. The Floop Pulse Concept: new aspects approaches and applications—an update. Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries. Robin L. Welcomme and T. Petr, Eds., FAO Regional Office for Asia and the Pacific, Bangkok, Thailand: 117–140.

  • Junk, W. J., P. B. Bayley, & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Proceedings of the International Large River Symposium (LARS). Dodge D.P.: 110–127.

  • Kattge, J., et al., 2019. TRY plant trait database—enhanced coverage and open access. Global Change Biology 26: 119–188.

    PubMed  Google Scholar 

  • Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

    Google Scholar 

  • Keddy, P. A. & T. H. Ellis, 1985. Seedling recruitment of 11 wetland plant species along a water level gradient: shared or distinct responses? Canadian Journal of Botany 63: 1876–1879.

    Google Scholar 

  • Laliberté, E., P. Legendre, & B. Shipley, 2014. Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. https://cran.r-project.org/web/packages/FD/index.html.

  • Latapie, A., B. Camenen, S. Rodrigues, A. Paquier, J. P. Bouchard & F. Moatar, 2014. Assessing channel response of a long river influenced by human disturbance. CATENA 121: 1–12.

    Google Scholar 

  • Lavorel, S., K. Grigulis, S. McIntyre, N. S. G. Williams, D. Garden, J. Dorrough, S. Berman, F. Quétier, A. Thébault & A. Bonis, 2007. Assessing functional diversity in the field—methodology matters! Functional Ecology 22: 134–147.

    Google Scholar 

  • Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69: 1–24.

    Google Scholar 

  • Leyer, I., 2006. Dispersal, diversity and distribution patterns in pioneer vegetation: the role of river-floodplain connectivity. Journal of Vegetation Science 17: 407–416.

    Google Scholar 

  • Li, Y. & B. Shipley, 2017. An experimental test of CSR theory using a globally calibrated ordination method. PLoS ONE 12: e0175404.

    PubMed  PubMed Central  Google Scholar 

  • Liu, W., Q. Zhang & G. Liu, 2009. Seed banks of a river–reservoir wetland system and their implications for vegetation development. Aquatic Botany 90: 7–12.

    Google Scholar 

  • Mamarot, J. & A. Rodriguez, 2014. Mauvaises herbes des cultures, Acta, Paris:

    Google Scholar 

  • McCoy-Sulentic, M. E., T. E. Kolb, D. M. Merritt, E. Palmquist, B. E. Ralston, D. A. Sarr & P. B. Shafroth, 2017. Changes in community-level Riparian plant traits over inundation gradients, Colorado River, Grand Canyon. Wetlands 37: 635–646.

    Google Scholar 

  • Merritt, D. M. & E. E. Wohl, 2006. Plant dispersal along rivers fragmented by dams. River Research and Applications 22: 1–26.

    Google Scholar 

  • Naiman, R. J., H. Decamps & M. Pollock, 1993. The role of Riparian Corridors in maintaining regional biodiversity. Ecological Applications 3: 209–212.

    PubMed  Google Scholar 

  • Nilsson, C., R. L. Brown, R. Jansson & D. M. Merritt, 2010. The role of hydrochory in structuring riparian and wetland vegetation. Biological Reviews 85: 837–858.

    PubMed  Google Scholar 

  • O’Donnell, J., K. A. Fryirs & M. R. Leishman, 2015. Seed banks as a source of vegetation regeneration to support the recovery of degraded rivers: a comparison of river reaches of varying condition. Science of the Total Environment 542: 591–602.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2019. Community Ecology Package.

  • Pereira, M., J. Greet & C. S. Jones, 2021. Native riparian plant species dominate the soil seedbank of in-channel geomorphic features of a regulated river. Environmental Management. https://doi.org/10.1007/s00267-021-01435-4.

    Article  PubMed  Google Scholar 

  • Pierce, S., D. Negreiros, B. E. L. Cerabolini, J. Kattge, S. Díaz, M. Kleyer, B. Shipley, S. J. Wright, N. A. Soudzilovskaia, V. G. Onipchenko, P. M. van Bodegom, C. Frenette-Dussault, E. Weiher, B. X. Pinho, J. H. C. Cornelissen, J. P. Grime, K. Thompson, R. Hunt, P. J. Wilson, G. Buffa, O. C. Nyakunga, P. B. Reich, M. Caccianiga, F. Mangili, R. M. Ceriani, A. Luzzaro, G. Brusa, A. Siefert, N. P. U. Barbosa, F. S. Chapin, W. K. Cornwell, J. Fang, G. W. Fernandes, E. Garnier, S. Le Stradic, J. Peñuelas, F. P. L. Melo, A. Slaviero, M. Tabarelli & D. Tampucci, 2017. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology 31: 444–457.

    Google Scholar 

  • Puijalon, S., T. J. Bouma, C. J. Douady, J. van Groenendael, N. P. R. Anten, E. Martel & G. Bornette, 2011. Plant resistance to mechanical stress: evidence of an avoidance–tolerance trade-off. New Phytologist 191: 1141–1149.

    CAS  Google Scholar 

  • R Core Team, 2019. R: A Language and Environment for Statistical, R Foundation for Statistical Computing, Vienna:

    Google Scholar 

  • Riquier, J., H. Piégay & M. Šulc Michalková, 2015. Hydromorphological conditions in eighteen restored floodplain channels of a large river: linking patterns to processes. Freshwater Biology 60: 1085–1103.

    Google Scholar 

  • Riquier, J., H. Piégay, N. Lamouroux & L. Vaudor, 2017. Are restored side channels sustainable aquatic habitat features? Predicting the potential persistence of side channels as aquatic habitats based on their fine sedimentation dynamics. Geomorphology 295: 507–528.

    Google Scholar 

  • Rodrigues, S., J.-G. Bréhéret, J.-J. Macaire, S. Greulich & M. Villar, 2007. In-channel woody vegetation controls on sedimentary processes and the sedimentary record within alluvial environments: a modern example of an anabranch of the River Loire, France. Sedimentology 54: 223–242.

    Google Scholar 

  • Rodrigues, S., J.-G. Bréhéret, J.-J. Macaire, F. Moatar, D. Nistoran & P. Jugé, 2006. Flow and sediment dynamics in the vegetated secondary channels of an anabranching river: the Loire River (France). Sedimentary Geology 186: 89–109.

    Google Scholar 

  • Saatkamp, A., P. Poschlod & D. L. Venable, 2014. The functional role of soil seed banks in natural communities. In Gallagher, R. S. (ed), Seeds: The Ecology of Regeneration in Plant Communities CABI, Wallingford: 263–296.

    Google Scholar 

  • Saatkamp, A., A. Cochrane, L. Commander, L. K. Guja, B. Jimenez-Alfaro, J. Larson, A. Nicotra, P. Poschlod, F. A. O. Silveira, A. T. Cross, E. L. Dalziell, J. Dickie, T. E. Erickson, A. Fidelis, A. Fuchs, P. J. Golos, M. Hope, W. Lewandrowski, D. J. Merritt, B. P. Miller, R. G. Miller, C. A. Offord, M. K. J. Ooi, A. Satyanti, K. D. Sommerville, R. Tangney, S. Tomlinson, S. Turner & J. L. Walck, 2019. A research agenda for seed-trait functional ecology. New Phytologist 221: 1764–1775.

    Google Scholar 

  • Schwab, A. & K. Kiehl, 2017. Analysis of soil seed bank patterns in an oxbow system of a disconnected floodplain. Ecological Engineering 100: 46–55.

    Google Scholar 

  • Soons, M. B., G. A. de Groot, M. T. Cuesta Ramirez, R. G. A. Fraaije, J. T. A. Verhoeven & M. de Jager, 2017. Directed dispersal by an abiotic vector: wetland plants disperse their seeds selectively to suitable sites along the hydrological gradient via water. Functional Ecology 31: 499–508.

    Google Scholar 

  • Tison, J.-M., & B. de Foucault, 2014. Flora Gallica: flore de France. Biotope Éditions, Mèze.

  • Tockner, K., F. Malard & J. V. Ward, 2000. An extension of the flood pulse concept. Hydrological Processes 14: 2861–2883.

    Google Scholar 

  • Walker, L. R., P. J. Bellingham & D. A. Peltzer, 2006. Plant characteristics are poor predictors of microsite colonization during the first two years of primary succession. Journal of Vegetation Science 17(3):397–406. https://doi.org/10.1111/j.1654-1103.2006.tb02460.x

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research & Management 11: 105–119.

    Google Scholar 

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis, Springer, New York:

    Google Scholar 

Download references

Acknowledgments

We are grateful to Mathilde Champigny for field and laboratory works. This work was performed within the framework of the Loire Long-Term Ecological Research (LTER—Zone Atelier Loire). We thank the reviewers for their constructive comments about the manuscript.

Funding

This study is part of the PhD thesis of Gaudichet C. included in the R-TEMUS Bio project, funded by the Agence de l’Eau Loire-Bretagne (convention n°2017C005), the Région Centre-Val de Loire and the Région Pays de la Loire (convention n°2018–09882).

Author information

Authors and Affiliations

Authors

Contributions

C. Gaudichet and S. Greulich, conceived and designed the study. C. Gaudichet, S. Grellier and S. Greulich worked on data collection and analysis. C. Gaudichet wrote the manuscript in consultation with S. Greulich. S. Grellier and S. Rodrigues provided substantial comments and feedbacks on the manuscript.

Corresponding author

Correspondence to Corentin Gaudichet.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling editor: Andre Andrian Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudichet, C., Greulich, S., Grellier, S. et al. Effect of flooding gradient on soil seedbank and standing vegetation in a disconnecting side channel of the Loire River (France). Hydrobiologia 849, 1383–1396 (2022). https://doi.org/10.1007/s10750-021-04785-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04785-6

Keywords

Navigation