Skip to main content

Advertisement

Log in

UVB radiation enhances the toxic effects of three organophosphorus insecticides on tadpoles from tropical anurans

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Amphibians are declining around the world as they are particularly sensitive to multiple environmental stressors, among them the increase of UVB radiation and the environmental contaminations of body waters caused by agrochemicals. Because of the limited research on the interaction between agrochemicals and UVB radiation on tropical amphibians, we performed this study to test the hypothesis that the exposure to UVB radiation will enhance the toxic effects of the organophosphorus (OPs) insecticides chlorpyrifos, diazinon and monocrotophos, which are widely used in Colombia, on tadpoles from three tropical anuran species. Under laboratory conditions, we exposed independently tadpoles of Boana xerophylla, Engystomops pustulosus and Rhinella horribilis to each of the three insecticides with the presence of UVB radiation and without UVB, during 96 h toxicity tests. We then examined their effects on tadpole mortality, capacity to swim and total length. We found that UVB enhanced the mortality of insecticides (these treatments had a lower LC50 than those without UVB radiation), increased the tadpole immobility (they were unable to swim), and decreased the total length. Therefore, we validated the prediction that UVB radiation enhances the toxicity of the OPs insecticides studied on our anuran species and consequently may be one of the causal factors of amphibian population declines in the tropical countries. However, we suggest to perform more realistic field studies in areas with agrochemical presence to a better understanding of the effect of these stressors on anurans as there are environmental factors that attenuate underwater UVB radiation and toxicity in aquatic organisms, although it is also known that under field conditions some OPs insecticides become more toxic in the presence of UVB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Aggarwal, V., X. Deng, A. Tuli & K. S. Goh, 2013. Diazinon-chemistry and environmental fate: a California perspective. Reviews of Environmental Contamination and Toxicology 223: 107–140.

    CAS  PubMed  Google Scholar 

  • Agostini, M. G., I. Roesler, C. Bonetto, A. E. Ronco & D. Bilenca, 2020. Pesticides in the real world: the consequences of GMO-based intensive agriculture on native amphibians. Biological Conservation 241: 108355.

    Article  Google Scholar 

  • Ankley, G. T., S. J. Degitz, S. A. Diamond & J. E. Tietge, 2004. Assessment of environmental stressors potentially responsible for malformations in North American anuran amphibians. Ecotoxicology and Environmental Safety 58: 7–16.

    Article  CAS  PubMed  Google Scholar 

  • Baker, N. J., B. A. Bancroft & T. S. Garcia, 2013. A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians. Science of the Total Environment 449: 150–156.

    Article  CAS  Google Scholar 

  • Bancroft, B. A., N. J. Baker, C. L. Searle, T. S. Garcia & A. R. Blaustein, 2008. Larval amphibians seek warm temperatures and do not avoid harmful UVB radiation. Behavioral Ecology 19: 879–886.

    Article  Google Scholar 

  • Barreto, E., C. Salgado Costa, P. Demetrio, C. Lascano, A. Venturino & G. S. Natale, 2020. Sensitivity of Boana pulchella (Anura: Hylidae) tadpoles to environmentally relevant concentrations of Chlorpyrifos: effects at the individual and biochemical levels. Environmental Toxicology and Chemistry 39: 834–841.

    Article  CAS  PubMed  Google Scholar 

  • Barron, M. G. & K. B. Woodburn, 1995. Ecotoxicology of chlorpyrifos. Reviews of Environmental Contamination and Toxicology 144: 1–93.

    CAS  PubMed  Google Scholar 

  • Beani, J. C., 2014. Ultraviolet A-induced DNA damage: role in skin cancer. Bulletin De L’academie Nationale De Medecine 198: 273–295.

    Article  CAS  PubMed  Google Scholar 

  • Belden, L. K. & A. R. Blaustein, 2002. Exposure of red-legged frog embryos to ambient UV-B radiation in the field negatively affects larval growth and development. Oecologia 130: 551–554.

    Article  PubMed  Google Scholar 

  • Belden, L. K., I. T. Moore, R. T. Mason, J. C., Wingfield & A. R. Blaustein, 2003. Survival, the hormonal stress response and UV-B avoidance in cascades frog tadpoles (Rana cascadae) exposed to UV-B radiation. Functional Ecology 17: 409–416.

    Article  Google Scholar 

  • Bernabó, I., E. Sperone, S. Tripepi & E. Brunelli, 2011. Toxicity of chlorpyrifos to larval Rana dalmatina: acute and chronic effects on survival, development, growth and gill apparatus. Archives of Environmental Contamination and Toxicology 61: 704–718.

    Article  PubMed  Google Scholar 

  • Blaustein, A. R. & B. A. Bancroft, 2007. Amphibian population declines: evolutionary considerations. BioScience 57: 437–444.

    Article  Google Scholar 

  • Blaustein, A. R. & L. K. Belden, 2003. Amphibian defenses against ultraviolet-B radiation. Evolution & Development 5: 89–97.

    Article  CAS  Google Scholar 

  • Blaustein, A. R. & J. M. Kiesecker, 2002. Complexity in conservation: lessons from the global decline of amphibian populations. Ecology Letters 5: 597–608.

    Article  Google Scholar 

  • Blaustein, A. R., P. D. Hoffman, D. G. Hokit, J. M. Kiesecker, S. C. Walls & J. B. Hays, 1994. UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proceedings of the National Academy of Sciences 91: 1791–1795.

    Article  CAS  Google Scholar 

  • Blaustein, A. R., J. M. Romansic, J. M. Kiesecker & A. C. Hatch, 2003. Ultraviolet radiation, toxic chemicals and amphibian population declines. Diversity and Distributions 9: 123–140.

    Article  Google Scholar 

  • Bonfanti, P., A. Colombo, F. Orsi, I. Nizzetto, M. Andrioletti, R. Bacchetta & C. Vismara, 2004. Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development. Aquatic Toxicology 70: 189–200.

    Article  CAS  PubMed  Google Scholar 

  • Bridges, C. M. & M. D. Boone, 2003. The interactive effects of UV-B and insecticide exposure on tadpole survival, growth and development. Biological Conservation 113: 49–54.

    Article  Google Scholar 

  • Brühl, C. A., S. Pieper & B. Weber, 2011. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environmental Toxicology and Chemistry 30: 2465–2472.

    Article  PubMed  Google Scholar 

  • Choudhury, P. P. & S. Saha, 2020. Dynamics of pesticides under changing climatic scenario. Environmental Monitoring and Assessment 192: 1–3.

    Article  Google Scholar 

  • Cramp, R. L. & C. E. Franklin, 2018. Exploring the link between ultraviolet B radiation and immune function in amphibians: implications for emerging infectious diseases. Conservation Physiology 6: 035.

    Article  Google Scholar 

  • da Rocha, M. C., M. B. dos Santos, R. Zanella, O. D. Prestes, A. S. Gonçalves & A. P. Schuch, 2020. Preserved riparian forest protects endangered forest-specialists amphibian species against the genotoxic impact of sunlight and agrochemicals. Biological Conservation 249: 108746.

    Article  Google Scholar 

  • da Silva, M. B., R. E. Fraga, P. B. Nishiyama, I. S. S. da Silva, N. L. B. Costa, L. A. A. de Oliveira & F. A. Juncá, 2020. Leukocyte profiles in Odontophrynus carvalhoi (Amphibia: Odontophrynidae) tadpoles exposed to organophosphate chlorpyrifos pesticides. Water, Air, & Soil Pollution 231: 1–11.

    Article  Google Scholar 

  • dos Santos, C. P., J. E. L. Londero, M. B. Dos Santos, R. dos Santos Feltrin, L. Loebens, L. B. Moura & A. P. Schuch, 2018. Sunlight-induced genotoxicity and damage in keratin structures decrease tadpole performance. Journal of Photochemistry and Photobiology b: Biology 181: 134–142.

    Article  Google Scholar 

  • Egea-Serrano, A., R. A. Relyea, M. Tejedo & M. Torralva, 2012. Understanding of the impact of chemicals on amphibians: a meta-analytic review. Ecology and Evolution 2: 1382–1397.

    Article  PubMed  PubMed Central  Google Scholar 

  • ENA ENCUESTA NACIONAL AGROPECUARIA, 2019. Boletín Técnico. https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2019/boletin_ena_2019.pdf. Accessed 18 Mar 2021.

  • Fisher, M. C. & T. W. J. Garner, 2020. Chytrid fungi and global amphibian declines. Nature Reviews Microbiology 18: 332–343.

    Article  CAS  PubMed  Google Scholar 

  • Giesy, J. P. & K. A. Solomon, 2014. Ecological risk assessment for chlorpyrifos in terrestrial and aquatic systems in North America. Reviews of Environmental Contamination and Toxicology 231: 1–269.

    CAS  PubMed  Google Scholar 

  • Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.

    Google Scholar 

  • Greer, J. B., J. T. Magnuson, K. Hester, M. Giroux, C. Pope, T. Anderson & D. Schlenk, 2019. Effects of chlorpyrifos on cholinesterase and serine lipase activities and lipid metabolism in brains of rainbow trout (Oncorhynchus mykiss). Toxicological Sciences 172: 146–154.

    Article  CAS  PubMed Central  Google Scholar 

  • Guayara-Barragán, M. G. & M. H. Bernal, 2012. Fecundidad y fertilidad en once especies de anuros colombianos con diferentes modos reproductivos. Caldasia 34: 483–496.

    Google Scholar 

  • Guth, J. A., 1994. Monocrotophos-environmental fate and toxicity. Reviews of Environmental Contamination and Toxicology 139: 75–136.

    CAS  Google Scholar 

  • Hamilton, M. A., R. C. Russo & R. V. Thurston, 1977. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science & Technology 11: 714–719.

    Article  CAS  Google Scholar 

  • Harte, J., C. Holdren, R. Schneider & C. Shirley, 1991. Toxics A to Z: a guide to everyday pollution hazards, University of California Press, Berkeley:

    Google Scholar 

  • Hatch, A. C. & A. R. Blaustein, 2000. Combined effects of UV-B, nitrate, and low pH reduce the survival and activity level of larval cascades frogs (Rana cascadae). Archives of Environmental Contamination and Toxicology 39: 494–499.

    Article  CAS  PubMed  Google Scholar 

  • Hatch, A. C. & G. A. Burton Jr., 1998. Effects of photoinduced toxicity of fluoranthene on amphibian embryos and larvae. Environmental Toxicology and Chemistry: an International Journal 17: 1777–1785.

    Article  CAS  Google Scholar 

  • Hatch, A. C. & G. A. Burton Jr., 1999. Photo-induced toxicity of PAHs to Hyalella azteca and Chironomus tentans: effects of mixtures and behavior. Environmental Pollution 106: 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, D. J., B. A. Rattner, G. A. Burton & J. Cairns (eds), 2003. Handbook of ecotoxicology., 2nd ed. Lewis Publishers, New York.

    Google Scholar 

  • IUCN International Union for Conservation of Nature, 2020. The IUCN Red List of Threatened Species. Version 2020–2. https://www.iucnredlist.org. Accessed 9 July 2020.

  • Koponen, P. S. & J. V. Kukkonen, 2002. Effects of bisphenol A and artificial UVB radiation on the early development of Rana temporaria. Journal of Toxicology and Environmental Health Part A 65: 947–959.

    Article  CAS  PubMed  Google Scholar 

  • Lajmanovich, R. C., A. M. Attademo, M. F. Simoniello, G. L. Poletta, C. M. Junges, P. M. Peltzer & M. C. Cabagna-Zenklusen, 2015. Harmful effects of the dermal intake of commercial formulations containing chlorpyrifos, 2, 4-D, and glyphosate on the common toad Rhinella arenarum (Anura: Bufonidae). Water, Air, & Soil Pollution 226: 427.

    Article  Google Scholar 

  • Lawrence, E. & T. Isioma, 2010. Acute toxic effects of Endosulfan and Diazinon pesticides on adult amphibians (Bufo regularis). Journal of Environmental Chemistry and Ecotoxicology 2: 73–78.

    CAS  Google Scholar 

  • Levis, N. A. & J. R. Johnson, 2015. Level of UV-B radiation influences the effects of glyphosate-based herbicide on the spotted salamander. Ecotoxicology 24: 1073–1086.

    Article  CAS  PubMed  Google Scholar 

  • Little, E. E. & R. D. Calfee, 2010. Solar UV radiation and amphibians. Ecotoxicology of amphibians and reptiles, 2nd ed. CRC Press, New York:

    Google Scholar 

  • Londero, J. E. L., M. B. Dos Santos & A. P. Schuch, 2019. Impact of solar UV radiation on amphibians: focus on genotoxic stress. Mutation Research/genetic Toxicology and Environmental Mutagenesis 842: 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Macias, G., A. Marco & A. R. Blaustein, 2007. Combined exposure to ambient UVB radiation and nitrite negatively affects survival of amphibian early life stages. Science of the Total Environment 385: 55–65.

    Article  CAS  Google Scholar 

  • Marco, A., M. Lizana, A. Alvarez & A. R. Blaustein, 2001. Egg-wrapping behaviour protects newt embryos from UV radiation. Animal Behaviour 61: 639–644.

    Article  Google Scholar 

  • Matsushita, T., Y. Fujita, K. Omori, Y. Huang, Y. Matsui & N. Shirasaki, 2020. Effect of chlorination on anti-acetylcholinesterase activity of organophosphorus insecticide solutions and contributions of the parent insecticides and their oxons to the activity. Chemosphere 261: 127743.

    Article  CAS  PubMed  Google Scholar 

  • McClelland, S. J., R. J. Bendis, R. A. Relyea & S. K. Woodley, 2018. Insecticide-induced changes in amphibian brains: how sublethal concentrations of chlorpyrifos directly affect neurodevelopment. Environmental Toxicology and Chemistry 37: 2692–2698.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, E. M., J. R. Herman, E. A. Celarier, J. W. Wilkinson, C. Carey & R. J. Rusin, 2001. Evaluating ultraviolet radiation exposure with satellite data at sites of amphibian declines in Central and South America. Conservation Biology 15: 914–929.

    Article  Google Scholar 

  • Misra, R. B., R. S. Ray & R. K. Hans, 2005. Effect of UVB radiation on human erythrocytes in vitro. Toxicology in Vitro 19: 433–438.

    Article  CAS  PubMed  Google Scholar 

  • Moe, S. J., K. De Schamphelaere, W. H. Clements, M. T. Sorensen, P. J. Van den Brink & M. Liess, 2013. Combined and interactive effects of global climate change and toxicants on populations and communities. Environmental Toxicology and Chemistry 32: 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman, M. C. & W. H. Clements, 2007. Ecotoxicology: a comprehensive treatment, CRC Press, New York:

    Book  Google Scholar 

  • Nobonita, D. & D. Suchismita, 2013. Chlorpyrifos toxicity in fish: a review. Current World Environment 8: 77–84.

    Google Scholar 

  • Oris, J. T. & J. P. Giesy Jr., 1985. The photoenhanced toxicity of anthracene to juvenile sunfish (Lepomis spp.). Aquatic Toxicology 6: 133–146.

    Article  CAS  Google Scholar 

  • Pahkala, M., A. Laurila & J. Merilä, 2001. Carry–over effects of ultraviolet-B radiation on larval fitness in Rana temporaria. Proceedings of the Royal Society of London. Series b: Biological Sciences 268: 1699–1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palen, W. J., C. E. Williamson, A. A. Clauser & D. E. Schindler, 2005. Impact of UV-B exposure on amphibian embryos: linking species physiology and oviposition behaviour. Proceedings of the Royal Society b: Biological Sciences 272: 1227–1234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrick, M. H. & R. O. Rahn, 1976. Photochemistry of DNA and polynucleotides. Photochemistry and Photobiology of Nucleic Acids 2: 35–91.

    Article  CAS  Google Scholar 

  • Peng, S., H. Liao, T. Zhou & S. Peng, 2016. Effects of UVB radiation on freshwater biota: a meta-analysis. Global Ecology and Biogeography 26: 500–510.

    Article  Google Scholar 

  • Quaranta, A., V. Bellantuono, G. Cassano & C. Lippe, 2009. Why amphibians are more sensitive than mammals to xenobiotics. PLoS ONE 4: e7699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robles-Mendoza, C., S. R. Zúñiga-Lagunes, C. A. P. de León-Hill, J. Hernández-Soto & C. Vanegas-Pérez, 2011. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity. Aquatic Toxicology 105: 728–734.

    Article  CAS  PubMed  Google Scholar 

  • Rowe, C. L., O. M. Kinney, R. D. Nagle & J. D. Congdon, 1998. Elevated maintenance costs in an anuran (Rana catesbeiana) exposed to a mixture of trace elements during the embryonic and early larval periods. Physiological Zoology 71: 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Rutkoski, C. F., N. Macagnan, A. Folador, V. J. Skovronski, A. M. de Amaral, J. Leitemperger, M. D. Costa, P. A. Hartmann, C. Müller, L. V. Loro & M. T. Hartmann, 2020. Morphological and biochemical traits and mortality in Physalaemus gracilis (Anura: Leptodactylidae) tadpoles exposed to the insecticide chlorpyrifos. Chemosphere 250: 126162.

    Article  CAS  PubMed  Google Scholar 

  • Schiesari, L., B. Grillitsch & H. Grillitsch, 2007. Biogeographic biases in research and their consequences for linking amphibian declines to pollution. Conservation Biology 21: 465–471.

    Article  PubMed  Google Scholar 

  • Sparks, T. C., A. J. Crossthwaite, R. Nauen, S. Banba, D. Cordova, F. Earley, U. Ebbinghaus-Kintscher, S. Fujioka, A. Hirao, D. Karmon, R. Kennedy, T. Nakao, H. J. R. Popham, V. Salgado, G. B. Watson, B. J. Wedel & F. J. Wessels, 2020. Insecticides, biologics and nematicides: updates to IRAC’s mode of action classification—a tool for resistance management. Pesticide Biochemistry and Physiology 167: 104587.

    Article  CAS  PubMed  Google Scholar 

  • Sparling, D. W. & G. Fellers, 2007. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii. Environmental Pollution 147: 535–539.

    Article  CAS  PubMed  Google Scholar 

  • StatSoft. Inc., 2017. STATISTICA (data analysis software system). Version 13.3. www.statsoft.com.

  • Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. Rodrigues, D. L. Fischman & R. W. Waller, 2008. Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783–1786.

    Article  Google Scholar 

  • Sumon, K. A., H. Rashid, E. T. Peeters, R. H. Bosma & P. J. Van den Brink, 2018. Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh. Chemosphere 206: 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Swain, S. K. & M. R. Mahananda, 2014. Effect of monocrotophos, an organophosphorus pesticide on the growth of tadpoles of Limnonectis limnocharis, a rice field frog. Natural Resources and Conservation 2: 1–5.

    Article  Google Scholar 

  • US Environmental Protection Agency (USEPA), 2014. Draft Guideline for the Testing of Chemicals. The Larval Amphibian Growth and Development Assay (LAGDA).

  • Van Meter, R. J., D. A. Glinski, T. Hong, M. Cyterski, W. M. Henderson & S. T. Purucker, 2014. Estimating terrestrial amphibian pesticide body burden through dermal exposure. Environmental Pollution 193: 262–268.

    Article  PubMed  Google Scholar 

  • Velmurugan, G., D. V. Babu & S. Ramasamy, 2013. Prolonged monocrotophos intake induces cardiac oxidative stress and myocardial damage in rats. Toxicology 307: 103–108.

    Article  CAS  PubMed  Google Scholar 

  • Wake, D. B. & V. T. Vredenburg, 2008. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences 105: 11466–11473.

    Article  CAS  Google Scholar 

  • Watson, F. L., H. Schmidt, Z. K. Turman, N. Hole, H. Garcia, J. Gregg & E. A. Fradinger, 2014. Organophosphate pesticides induce morphological abnormalities and decrease locomotor activity and heart rate in Danio rerio and Xenopus laevis. Environmental Toxicology and Chemistry 33: 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  • Widder, P. D. & J. R. Bidwell, 2008. Tadpole size, cholinesterase activity, and swim speed in four frog species after exposure to sub-lethal concentrations of chlorpyrifos. Aquatic Toxicology 88: 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Wijesinghe, M. R., M. G. D. K. Bandara, W. D. Ratnasooriya & G. P. Lakraj, 2011. Chlorpyrifos-induced toxicity in Duttaphrynus melanostictus (Schneider 1799) larvae. Archives of Environmental Contamination and Toxicology 60: 690–696.

    Article  CAS  PubMed  Google Scholar 

  • Yang, F. W., Y. X. Li & F. Z. Ren, 2019. Toxicity, residue, degradation and detection methods of the insecticide triazophos. Environmental Chemistry Letters 17: 1769–1785.

    Article  CAS  Google Scholar 

  • Yu, S., M. Wages, M. Willming, G. P. Cobb & J. D. Maul, 2015a. Joint effects of pesticides and ultraviolet-B radiation on amphibian larvae. Environmental Pollution 207: 248–255.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S., S. Tang, G. D. Mayer, G. P. Cobb & J. D. Maul, 2015b. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos. Aquatic Toxicology 159: 256–266.

    Article  CAS  PubMed  Google Scholar 

  • Zaga, A., E. E. Little, C. F. Rabeni & M. R. Ellersieck, 1998. Photoenhanced toxicity of a carbamate insecticide to early life stage anuran amphibians. Environmental Toxicology and Chemistry: an International Journal 17: 2543–2553.

    Article  CAS  Google Scholar 

  • Zahran, E., E. Risha, W. Awadin & D. Palić, 2018. Acute exposure to chlorpyrifos induces reversible changes in health parameters of Nile tilapia (Oreochromis niloticus). Aquatic Toxicology 197: 47–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Ministerio de Ciencia Tecnología e Innovación, Minciencias (Project Number 110574558312) and Oficina de Investigaciones y Desarrollo Científico of the Tolima University (Project Number 40230516). Experiments were authorized by the Bioethics Committee of Tolima University. Collection permit was approved by Corporación Autónoma Regional del Tolima, CORTOLIMA (Resolution Number 3758 from 16 November 2016). We thank the anonymous reviewers for their constructive comments.

Funding

This research was funded by Ministerio de Ciencia Tecnología e Innovación, Minciencias, and Oficina de Investigaciones y Desarrollo Científico of the Tolima University. The institutions not intervened in the design of the study and collection, or analysis, and interpretation of data or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LH, JM and MB. The first draft of the manuscript was written by MB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liliana M. Henao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts or competing interests.

Ethical approval

Experiments were authorized by the Bioethics Committee of Tolima University.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henao, L.M., Mendez, J.J. & Bernal, M.H. UVB radiation enhances the toxic effects of three organophosphorus insecticides on tadpoles from tropical anurans. Hydrobiologia 849, 141–153 (2022). https://doi.org/10.1007/s10750-021-04717-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04717-4

Keywords

Navigation